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Introduction MOSRP04

Introduction and Technical Overview, Consortium Strategy and
Summary of Progress and Plans: MOSRP04

This has been a positive year for M-OSRP, with significant progress on projects and milestones to
report. The central purpose of M-OSRP is to provide seismic methods and algorithms to directly
address the current biggest challenges to seismic exploration and production effectiveness. High on
the prioritized impediment list is the inability to provide, or adequately estimate, a velocity model
and/or the delineation of the boundary of interfaces where velocity and other properties change,
especially under complex geologic circumstances such as can occur e.g.,with targets beneath salt,
basalt and karsted sediments.

MULTIPLES

In our pre-UH M-OSRP history, we (along with our students and colleagues) developed methods
for eliminating free surface multiples and attenuating internal multiples, that require absolutely no
subsurface information. That earlier campaign and development was motivated by: (1) the need
for multiple removal methods to work in deep water, and (2) the need to provide multiple removal
methods that did not depend upon velocity information, move-out differences, periodicity, picking
events or any subsurface information or interpretive intervention, whatsoever. Hence, they directly
addressed the removal of multiples in the complex geologic circumstances mentioned above, e.g.,
salt, basalt and sub karsted plays. The methods that evolved from that earlier work were at that
earlier time, and remain today, the most physically complete, comprehensive and accommodating
methods for removing free surface multiples and attenuating internal multiples. We require that
capability to reside within M-OSRP for our research purposes, and we initiated an effort this past
year to provide those codes for M-OSRP purposes. These free surface and internal de-multiple
algorithms are more complete and capable than the algorithms distributed by all other consortia;
and, hence, we anticipate that some of our sponsors might have an interest in them, as well.

ASSUMPTIONS BEHIND THE WAVE THEORETIC INVERSE SCATTERING IN-
TERNAL MULTIPLE METHOD: LOWER HIGHER LOWER DIAGRAMS, IN DEPTH
AND WATER SPEED PSEUDO-DEPTH

There has been a recent heightened interest in the inverse scattering internal multiple attenuation
method in the literature and in other industry supported consortia, and in exploring possible ways
to extend and advance beyond current capability. To that end it is natural that those interested
in that pursuit would undertake an examination of the assumptions behind the inverse scattering

1



Introduction MOSRP04

internal multiple attenuator. However, in that undertaking some researchers concluded and then
published that an assumption behind the algorithm is a requirement that total travel time of
primary events must be a monotonic function of the depth of the reflectors where the primaries
experienced their upward reflection. B. Nita and A. Weglein examine that published claim in
this report, and conclude that no such assumption is ever required, assumed or called-upon in
the inverse scattering internal multiple attenuator. The fly in the ointment of those travel time
monotonicity arguments resides in an asymptotic analysis of the wave theory inverse scattering
de-multiple algorithm, leading to a total travel time condition. Asymptotic analysis is in fact not
an analysis of the algorithm, or of an equivalent algorithm, as one derives from adding the number
one to both sides of an original formula. That addition of one to both sides of an equation keeps the
original algorithm’s logic, requirements, assumptions and deliverables intact. Asymptotic analysis
is is fact two steps:(1) an asymptotic approximation and then (2) analysis, and conclusions reached
by that set of steps, although often useful, are never equivalent to or shared by the original form.
The very reason for performing asymptotic approximation is to alter algorithms, their underlying
assumptions and properties and requirements. The inverse scattering internal multiple attenuator
is applied as it stands, and as it was originally published by Weglein et al in 1997, and is not
in its meaning or application applied or calling for having an asymptotic makeover performed on
itself with resulting total travel time conditions. Furthermore, there is much analysis of that actual
original algorithm in the published literature, that doesn’t require asymptotic approximation to
gain insights and understanding.

The useful and relevant migration theory analog is that asymptotic analysis and subsequent re-
duction of prestack FK migration will lead to Kirchoff migration, and results in total travel time
arguments, and travel time tables. Those Kirchoff total time candidate reflector arguments are not
assumptions behind the non- asymptotic wave theory FK migration.

A form of prestack FK migration, with water speed, is the engine in the inverse scattering internal
de-multiple algorithm. Hence, the actual requirement behind the inverse scattering attenuation
algorithm is an assumption that the pseudodepth from imaging reflections with water speed have
the same relative relationship as the actual depths of the actual reflectors, that generate the inter-
nal multiple , with a lower higher lower assumed relationship, for both actual and pseudo depths.
Thus, the assumption behind the algorithm is a conserved relative pseudo depth to actual depth
relationship or equivalently pseudo depth or vertical travel time monotonicity, as a function of
depth. The latter vertical time monotonicity is a much less restrictive and accommodating of inter-
nal multiple condition, than asymptotic travel time monotonicity would allow, and examples which
violate the erroneous claimed travel time condition but satisfy the actual vertical time condition
are provided in this report, along with detailed analysis, taking the data from those examples step-
by-step through the multiple prediction algorithm. An example that violates the vertical travel
time condition is also described, and a suggestion provided for accommodating that class of events,
a suggestion which of course will not require knowing the velocity, since it also derives from the
inverse scattering series.

Wave theory and asymptotic approximations of wave theory are distinct in the: (1) assumptions
behind methods,and their physical completeness and appropriateness, (2) required input and result-
ing quality and properties of output, and (3) regimes of useful practical impact. Both are obviously
useful, and there are methods that represent combined aspects of both views. The inverse scatter-
ing internal multiple attenuator is a wave theory based method and algorithm. As with all useful
scientific enterprise it has pushed the boundary of what we can accommodate and attenuate in the

2



Introduction MOSRP04

world of internal multiples, and the boundary is defined by the assumptions behind the method.

Separately, on the issue of the effectiveness of the attenuator, within the confines of assumptions
in the last paragraph, A.C. Ramirez and A. B. Weglein extend an earlier simpler analysis of the
amplitude and time predictive properties of the internal multiple attenuator for 1d layered media.
The travel time prediction is exact and the difference between elimination and attenuation resides
in too much transmission coefficient in the prediction, compared to the actual multiple, but only
with transmission coefficients down to and including the internal multiple’s shallowest downward
reflection. For example, an internal multiple having its shallowest downward reflection at the water
bottom only has an error in its prediction of the transmission coefficients at the water bottom,
totally and completely independent of how many layers and how deep into the earth the multiple
travels below the water bottom.

CODES and M-OSRP

Kris Innanen, Sam Kaplan and Einar Otnes were involved in the 2D inverse scattering internal
de-multiple coding which began in July 2004. A discovery this past year by these researchers that
leads to a very significant speed-up of the algorithm is described in this report, and consists of a
multidimensional nested integral being replaced by a product of 1D integrals. In general, when
these codes reach a level of development, testing and documentation that satisfy our internal criteria
and standard for efficacy and transparency as a research prototype, they will be made available
and distributed to our sponsors. It is important to clearly state and communicate that the central
M-OSRP driver and motivation of code development is and will remain our internal research need
and requirement. However, we are delighted to also simultaneously share those research prototype
codes with our sponsors. At our meeting on April 20-21 2005, there will be a video presentation of
a multiples overview by Ken Matson (BP) and M-OSRP (UH Physics Dept.) where among other
important, insightful and practical observations are the distinct and explicit differences between the
original inverse scattering internal multiple attenuator, and algorithms available elsewhere today
in terms of ability to accommodate and remove multiples and types of multiples.

PRE-REQUISITES FOR MULTIPLE REMOVAL

While these inverse scattering de-multiple methods remove requirements about the subsurface,
they do place stringent requirements on estimating the wavelet, deghosting and completeness of
data collection and/or reconstruction. The current method for estimating the wavelet, the energy
minimizing adaptive subtraction, is often useful. However, it tends to fail precisely under the very
complex circumstances where the underlying de-multiple methods have their greatest strengths,
e.g, interfering events and multiples of different orders proximal to primaries. In response, we have
projects to provide prerequisite satisfaction that are as physically complete and consistent with
rather than something less and compromising of the multiple methods they are meant to serve.
Hence, satisfying this high bar of prerequisite satisfaction results in the multiple removal methods
that depend upon them having the opportunity to reach their potential. The potential of those de-
multiple methods are currently not close to being realized in practise. Zhiqiang Guo and Jingfeng
Zhang have pioneered and developed new robust methods for wavelet estimation and deghosting,
respectively. We expect the new wavelet estimation, deghosting and 2D inverse scattering internal

3



Introduction MOSRP04

de-multiple codes to be available around May 31, 2005. Several months later we will have a
2D Free-Surface multiple elimination code, and then a 3D Free-Surface code, without the typical
obliquity factor omission, and receiver only deghosting that especially and frequently compromises
the de-multiple effectiveness at long offsets. Meetings have been held with the IBM Blue Gene
team to determine whether the Blue Gene architecture and/or the internal de-multiple code might
need to be altered to accommodate a 3D inverse scattering internal de-multiple application on
field data. We anticipate that a committee of our sponsors will provide an important interface and
communication channel with IBM, and perhaps others, on that computational issue. M-OSRP does
not plan to get distracted and too heavily involved in that end of things. We will remain faithful
to our purpose of developing new concepts and “what” needs to be computed to achieve those
step change seismic capabilities, and will only be tangentially involved with questions of “how” to
compute.

BEYOND ATTENUATION OF INTERNAL MULTIPLES

We have launched a new project this year to incorporate more than the current leading term
attenuator from the inverse scattering subseries that eliminates internal multiples. Adriana C.
Ramirez and A. B. Weglein extend previous ideas and propose new concepts to identify those
terms taking attenuation towards elimination. A new method and algorithm is presented and the
1D initial tests are very encouraging. This method would aim to reduce residual internal multiples
where the magnitude of the residual can be significant, as e.g., in converted wave internal multiples,
or when a small residual multiple is proximal to, or interfering with, a small primary, as can occur
in subsalt plays.

ASSUMPTIONS BEHIND ALL SEISMIC ALGORITHMS DERIVED FROM
THE INVERSE SCATTERING SERIES

The inverse scattering series promises to directly produce inverse objectives, (order by order in
the measured data) and tasks associated with those objectives, directly in terms of the measured
data and reference propagation, never assumed to be the actual nor ever moved or altered towards
the actual. There are a series of assumptions in the steps that follow afterwards that are worth
explicitly listing. Tasks and terms used and adopted to determine objectives of those tasks are ap-
propriately defined by those whose problems we are seeking to address: exploration and production
seismologists. Consequently, definitions of terms like events, multiples and primaries relate to an
interface model of the earth where rapid property changes occur, and with constant or slowly or
continuously varying properties between those boundaries of rapid change. Definitions of primaries
and multiples relate to that model and furthermore often have either ray theoretical or 1D ad-
vertent and/or inadvertent assumptions. The definitions of primary and multiple and suggestions
for generalization are provided in A. Weglein and B. Dragoset (2005). Within any definition of a
multiple certain events are accommodated and others excluded. That definition is then viewed as
capturing a set of events we are interested in eliminating; and, assumptions are made on how the
forward series would construct those events and how the inverse series would remove those events,
in terms of only the measured data and water speed. In seeking to possibly improve and expand
the set of events accommodated by an algorithm, each of these distinct assumptions and definitions
require examination and generalization as appropriate for your desired increase in inclusiveness.

4
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Sometimes there are positive unanticipated surprises: As when the original inverse scattering in-
ternal de-multiple algorithm, which had rather simple ideas behind its thinking, has in fact been
shown to accommodate multiples with head-wave subevents. Please see B. Nita and A. Weglein
(2005), and our work in this report.

PROCESSING PRIMARIES

Our flagship and vanguard efforts today aim to provide to the processing of primaries the same
capability we earlier brought to the removal of multiples. Multiple removal can occur today without
subsurface information, whereas, primaries remain captured by the need to provide subsurface
information for the goals of depth imaging and inversion. Our purpose is to put them on an equal
footing, and the inverse scattering series views processing multiples and primaries in precisely that
manner. Since the inverse scattering series is non-linear in measured data, I thought it useful to
say a word about non-linear, and its fundamentally different types and the distinct inverse series
response and properties regarding those issues.

NON-LINEAR: Intrinsic and Situational

The word non-linear inversion often appears in our papers, presentations and in this report. In
an inverse sense, non-linear in the data refers to an objective that requires the multiplication of
the data by itself, some number of times, or sums of such data products. In contrast a linear
inverse process would require at most a sum over your data, and no data products. There are two
types of nonlinearity that occur in inverse problems, one is innate and intrinsic, and the other is
situational. An example of the former is the non-linear relationship between a reflection coefficient
and the change in any quantity across the interface, and the relationship between the change in
physical property and the reflection coefficient. The relationship between the wavefield on the
surface and the wavefield at depth is linear when the velocity is known, and non-linear when the
velocity is unknown. The latter data on the surface and data at depth relationship is an example
of a situational non-linearity. The inverse scattering series automatically accommodates both the
intrinsic and situational type of non-linearity. Furthermore, the inverse scattering series can deter-
mine, from the non-linear data communication itself, whether the situational non-linearity activity
is required, and only acts when a-priori information is determined as inadequate for inverse task
specific objectives by standards the data itself establishes. Hence, the situational non-linear inverse
activity only activates when the situation warrants and requires an intervention of those terms in
the judgement of the data; hence, it is the epitome of purposeful perturbation. That situational
activity doesn’t, for example, wander aimlessly around perturbation land finally concluding that
your original estimate was adequate. It decides that adequacy question while preparing to compute
the very first step beyond linear. The intrinsic non-linear activity in the inverse series is always
active and can be ignored by the user but is rarely ignorable. Both types on nonlinearity are part
of the direct inversion machine that the inverse scattering series represents. There are terms in
the inverse series that are addressing a combination of intrinsic and situational non-linearity, e.g.,
parameter estimation at a target when the data decides the overburden information is less than
adequate. These ideas and resulting algorithms are examined and exemplified in the succession of
imaging and inversion work of e.g., Simon Shaw, Doug Foster, Ken Matson, Haiyan Zhang, Fang
Liu, Kris Innanen and Bogdan Nita.
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The “direct” label of direct inverse methods is not to be underestimated, and implies algorithmic
purposefulness, in distinction with indirect search methods of model matching and cost function
minimization. The inverse scattering series method is the only known direct multi-D inverse seismic
method. And isolated task separated concepts allows pinpointing and extracting that purpose for
useful algorithms and impactful application.

MODEL TYPE AND INVERSE PROCESSES

The ultimate objective of inverse problems is to determine medium and target properties from
measurements external to the object under investigation. At the very first moment of problem
definition, there is a immediate requirement and unavoidable expectation, that the model type of the
medium be specified. In that step of model type specification, the number and type of parameters
and dimension of spatial variation of those parameters are given, and carefully prescribed, and in
that way you provide the inverse problem with clarity and meaning. Among the different model
types used in exploration seismology are, e.g., acoustic, elastic, heterogeneous, anisotropic, and
anelastic, and perhaps most important, the dimension of variability of the properties associated
with these model types. In this report we describe the different tasks associated with primaries as we
increase the number of spatial dimensions and number of parameters increase, from one parameter
acoustic, two parameter acoustic to three parameter elastic. One type of increase is taken with a
given study, e.g, we take one parameter from 1D to 2D while another project takes two and then
three parameters into a one D elastic world. Each forward research step in our program isolates
one single new issue, understands how the inverse series responds to those new challenges and
then combines the response to different issues, as appropriate. Hence, H. Zhang and A. Weglein
keep increasing number of parameters from acoustic to elastic in 1D, while simultaneously, F. Lui
et al. take a single parameter into a multi-D world. Multi-parameter issues are separated from
multi-dimensional issues, before combining. Another step taken here represents a direct response
to another of the impenetrable current seismic challenges: Q-compensation. A new effort by K.
Innanen and A. Weglein, reported here, describes the inverse scattering series response to data
smoothed by some process of intrinsic attenuation. In other words, we consider Q compensation
in a world of unknown or inadequate Q. They take a normal incidence wave on a 1D acoustic
medium where the reference medium is assumed to be free of absorption, i.e., Q=∞, and where
only the absorption is assumed to be unknown and never to be determined, but the output is Q
compensated. Once again, the plan is to isolate the problem being addressed before combining
with other issues for field data application.

One would reasonably expect that the details of methods and algorithms for inversion objectives
associated with primaries, and any tasks associated with achieving those ultimate objectives, would
overall and each separately depend upon that starting assumption on model type, beginning with
the dimension of assumed spatial variation . Once again, it remains an amazing fact that for
removing free and attenuating internal multiples that the inverse scattering series algorithms calls
only upon you to specify the dimension of earth variation and then the same algorithm only has
different numbers of integrals and different dimensions of data, for any of 1D or 2D or 3D, and is
totally independent of earth model type, and the properties of the subsurface parameters within
any of these models.
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INVERSION IN STAGES, ACHIEVING ISOLATED TASKS AND THEN REDEFIN-
ING AND RESTARTING THE PROBLEM: A STRATEGY FOR INTERVENING
WITH THE INVERSE SERIES FOR PRACTICAL IMPACTFUL SEISMIC OBJEC-
TIVES

The ultimate objective of seismic inversion has never been achieved in practise in a straight ahead
single step manner directly from reflection data, and that lack of success has not been due to a lack
of compute power.

The indirect model matching procedures of “all (at once) or nothing at all” have had more of the
latter and little of former, especially in the applications to a multi-dimensional complex earth,
where it is rare to have a reasonable proximal starting model, and bandwidth limitations of field
data can seriously impede any usefulness. And those complex ill-defined geologic circumstances
are the biggest impediments and challenges to current exploration and production seismic imaging
and inversion.

The only direct multi-dimensional inversion procedure for seismic application is the inverse scat-
tering series, and as a series is by definition not a one step method. However, it does not require
a proximal starting model, and equally important allows the series to be examined for its inner
working parts and to isolate terms into task specific subseries for separate and useful purposes.
That staged approach with intermediate objectives of: (1) removing free surface multiples, (2)
removing internal multiples, (3) imaging primaries to their correct spatial location, and finally (4)
determining medium properties, has provided the most effective methods to-date for removing mul-
tiples (see, e.g. Weglein et al , 2003). The latter Topical Review demonstrates that the two distinct
multiple attenuation tasks operate with the same identical algorithms independent of whether the
earth model is e.g., acoustic, elastic or anelastic. These algorithms only depend upon the dimension
of variability of properties in the earth, and knowledge of the source signature in water.

The inverse scattering series has recently progressed to the tasks associated with primaries: depth
accurate structure maps and earth property determination. M-OSRP has been the center and
driving force behind that new campaign. Although the removal of multiples without knowledge
or determination of the propagation properties of waves in the subsurface was far from simple,
and taking internal multiples from attenuated towards eliminated is one of our current project
objectives (see, e.g., A.C. Ramirez and A.B. Weglein, 2005) never-the-less those methods begin
and end as traces in time. Our research into primaries start with traces in the time domain, and
output in the spatial domain, the domain of discomfort for inverse methods. Furthermore, there is
full expectation that tasks and algorithms associated with primaries will have a closer interest in
model type, and e.g. that there is no way to even imagine that medium property identification can
take place without reference to a specific model type. Tasks and issues associated with structural
determination, without knowing the medium, are also vastly different depending on the dimension
of variation and number and types of velocities that are required for imaging reflection data. Hence,
a staged approach and isolation of tasks philosophy is essential in this yet tougher neighborhood,
and even more in demand for achieving insights, and then practical algorithms for these more
complicated and daunting objectives. We adopt that staged and isolation of tasks and issues
approach for primaries. We will now proceed to explain the current program activity on primaries,
and the logic behind the different parts separately and how they tie together, and how progress
within this isolated issue context ultimately contributes to the overall purpose and strategy, and
how each interfaces with other initiatives within the program and our projects and plans.
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The isolated task achievement plan can often spin-off incomplete but useful distinct intermediate
objectives. The test and standard of progress and positive impact here, is not necessarily solely
based on how complete the method is in some mathematical and physics sense, but always keeps
our eye on the target: Does the method improve upon current best practise.

The stages within the strategy for primaries include the following: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave, Simon Shaw et al., (2) 1D earth with
a one parameter subsurface and offset data, one shot record; Simon Shaw et al., (3) 2D earth
with one parameter, velocity, varying in x and z, and a suite of shot records, Fang Lui et al.,
(4) 1D acoustic earth with two parameters varying, velocity and density, one propagation velocity,
and one shot record of PP data, Haiyan Zhang et al., (5) 1D elastic earth, two elastic isotropic
parameters and density, and two wave speeds, for p and s waves, and PP, PS, SP, and SS shot
records data collected, Haiyan Zhang et al., (6) a 1D anelastic earth, with acoustic reference, for
Q compensation without knowing or determining Q, Kris Innanen et al. Each of these six stages
build on previous stages and progress only tackling one specific issue at a time. Then when the
separate lessons of how and where any specific isolated issue is addressed within the inverse series
is understood, analyzed and tested , then we are in a position to perhaps combine issues into a
progression of potentially practical impactful algorithms. Studying combinations of issues as the
first step makes the deciphering of multi-dimensional multi-parameter inverse activity extremely
difficult, at best. Understanding velocity independent depth imaging in 1D was invaluable for
extensions to multi-D where the inverse series has more than an inaccurate depth to address.
Understanding acoustic multi-parameter depth imaging where there is one unknown P velocity was
invaluable in understanding the elastic depth imaging problem, with unknown P and S velocities,
in which, starting with several different erroneous (PP, PS, ...) images, one accurate depth image
is created. As one moves from a one parameter, 1D model to a multi parameter multi-dimensional
heterogeneous elastic or anelastic medium, a sequence of ever more complex issues are confronted
and addressed by the corresponding inverse series. And always starting with the assumption that
you don’t know, or ever determine, the actual material properties that govern wave propagation in
the earth.

The inverse issues that arise in each of the stages in this drive into the world of primaries are
separate and distinct, and ever more complex, and their isolation gives some hope of navigating
towards practical algorithms.

Among the specific highlights on primaries:

Fang Lui et al. have progressed the velocity independent depth imaging to ever more complex 2D
acoustic models and capturing within his progression of algorithms more and more of the imaging
capability within the series as its response to those larger contrast and complexity challenges. His
input is a water speed FK migration and the algorithm is a closed form in terms of that input. Issues
and steps between this fundamentally new robust velocity independent depth imaging algorithmic
development and a first field field data test, will be discussed at the meeting.

Haiyan Zhang et al. have provided the first direct non-linear inversion for elastic waves and process-
ing primaries. It accommodates both the intrinsic and situational non-linearity due to an unknown
overburden and a non linear relationship between the sought after elastic property changes and
density and recorded PP, PS, SP and SS data. Haiyan has then isolated the case of only having the
latter AVO issue to address and further provides an approximate method that finds encouraging
results using only PP data as input. Six models were provided by Bob Keys of Exxon Mobil for
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testing. With PP data only the non-linear approximate method always produced the correct sign
of changes in density, in contrast to the linear and standard AVO inverse method that produced
the wrong sign of density change for several of the models tested. The overall conclusion is that
PP, PS, SP and SS data (in 1D and 2D) would be more effective and accurate in this first ever
direct nonlinear elastic prediction algorithm, but never-the-less useful added value results derive
from the approximate PP data, in comparison with current standard linear methods. There is
absolutely no model matching or cost function minimizing search mechanism here. The method is
a direct algorithm and the extension to complex corrugated, non specular and diffractive targets
are accommodated within the formalism, waiting for the next steps of staged progress. 4D and
reservoir monitoring, with e.g, fluid fingering are far from appropriate for Zoeppritz and Bortfeld
methods and ready made for this multi-D target machinery, and within our future plans.

SUMMARY

The biggest issue behind challenges to current imaging beneath complex ill-defined media is actually
well-known: the inability to determine an adequate velocity and boundary and interfaces of the
overburden velocity model. We communicated this year on a disconnect between the consistently
excellent results often shown at the SEG and EAGE imaging sessions with current leading edge
imaging algorithms, on synthetic data modeling of, e.g., salt, where either the velocity model is
given precisely, or where the sample rate of the modeling algorithm actually smoothed over rapid
velocity changes and corrugated boundaries (and thereby lost the very complexity in their model it
was seeking and expecting to capture in the modeled data), and the reality of, e.g., an intolerable
deep water dry hole drilling rate. Workshops to define the problem are popular and interesting and
probably a useful exercise. However, that central complex imaging problem is in fact a well-defined
and very well-known issue in every oil and service company, but is often neither acknowledged,
nor clearly stated and rarely well-communicated by the experts. In fact it is difficult to locate a
single mention of it in the literature, and yet we always hear about it from people in the petroleum
industry.

This M-OSRP program is a direct response to that actual challenge. Fundamental new thinking
to either significantly improve the velocity or avoid needing it is required. The latter approach is
behind our current campaign, and significant progress is being reported here on all fronts. In our
history, we provided methods for removing multiples without knowing or determining the velocity,
and that thinking is being extended to depth accurate imaging and inversion of primaries. There
is one comprehensive theory for removing multiples and processing primaries without knowing or
determining the velocity model: The inverse scattering series.

The question most often asked today is “given the exact or adequate velocity model in this geologic
setting, what migration strategy gives the best result: Kirchhoff, Beam, Higher order asymptotics,
wave theory...?”. The relevant question that in our view needs to be asked is, “Given the fact that
our biggest seismic challenges don’t allow an adequate velocity, what should then be our depth
imaging response and strategy?” The M-OSRP program is asking and responding to the relevant
question. That remains our plan.

The inverse scattering series is being mined for depth imaging and non-linear direct multi-D AVO
benefit, and moving internal multiple attenuation towards elimination. The practical prerequisites
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of wavelet estimation and de-ghosting are provided by innovative new methods based on the ex-
tinction theorem. We expect further progress next year on internal multiple removal methods,
prerequisite satisfaction, code development and imaging and inversion of primaries.

Thank you for your constant encouragement, and strong support.

Arthur B. Weglein

University of Houston
20 April, 2005.
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Wavelet estimation from towed-streamer pressure measurements

Zhiqiang Guo, Arthur B. Weglein, and Tik H. Tan

Abstract

Seismic processing seeks to extract sub-surface information from the wavefield recorded on
a measurement surface. This wavefield contains seismic events that have not experienced the
earth, and hence it is necessary to identify and separate them from the ones that have. In addi-
tion, scattered seismic waves depend on both earth properties and the character of the wavelet
that leaves the source. The separation of the portion that only depends on earth properties
(wavelet deconvolution) is a required step in many processing procedures. Furthermore, inverse
scattering subseries methods for removing multiples and for imaging and inverting primaries
without knowledge of the subsurface, place a high-bar on the pre-processing steps including
estimation of the source signature. The current method for estimating the wavelet, the energy
minimizing adaptive subtraction, is often useful. However, it tends to fail precisely under the
very complex circumstances where the inverse scattering methods have their greatest strengths,
e.g., in the case of free surface or internal multiple algorithms, with interfering events and mul-
tiples of different orders proximal to primaries. In this paper we present a new approach to
addressing this challenge, which combines, extends and alters two previous wave theoretical
methods, to find a good approximation to the source wavelet. The algorithm can be interpreted
as navigating between two published versions of the extinction theorem and the triangle equality.
The triangle relates the pressure along the cable, the normal derivative of the pressure along the
cable and the source signature in water. An altered form of one of those two triangle relations
provides two independent of a “nearby problem” and allows the subsequent elimination of the
normal derivative and solution for the “nearby wavelet” in terms of only the towed streamer
data. The central frequency of the incident wavelet determines the alteration of one of the two
equations that will allow a good stable wavelet estimate to the actual. Empirical tests indicate
that the new method presented in this paper produces an accurate and stable source wavelet.
A comparison with the current industry standard, energy minimization adaptive subtraction
procedure, is also shown in terms of efficacy for free surface multiple removal. The conclusion
of these tests are positive and encouraging. This is the first direct source signature method, for
amplitude and phase, directly in terms of pressure measurements along the cable.

1 Introduction

Wavelet estimation is one of the classic and central issues in seismic data processing. These are
different methods that address this challenge and objectives that interface and overlap with the
purposes of seismic inversion and resolution.

A rejuvenated interest in multiples caused by the industry trend to deep water and exploring be-
neath complex geologic formations, and new non-linear resides methods that responded to those
challenges brought a new heightened interest in the requirements to allow these methods to reach
their potential. The intrinsic strengths of these methods, e.g., Carvalho et al. (1), Weglein et al. (7)
and Weglein et al. (6), Verschuur et al. (4), reduced or eliminated entirely any required subsurface
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information for these algorithms to provide to deep water and complex geological conditions. How-
ever, the methods have other requisites in the definition and completeness of the seismic experiment.
Among the former requirements is the no-true of the wave that leaves the source, i.e., the source
signature or wavelet in water, and in the latter category, these methods share with wave theory
processing (e.g., wave imaging methods). A heightened need to collect/extrapolate/interpolate the
approximate dimension of surface data that corresponds with the dimension of subsurface variation.

There are two aspects of predicting multiples: amplitude and phase (time). The most serious
error in a prediction algorithm is an error in timing of the event, and an incorrect dimension of
data acquisition can impact that most serious issue. With recent published results from Shell,
Statoil, PGS/Delft on full or close to full 3-D data for free surface multiple removal methods,
issues of amplitude properties in prediction use in significance and practical moment. This means
that amplitude effects, e.g., obliquity, wavelet, and deghosting are all now high priority. Results
of the research in this paper directly address one of these key amplitude requirements. If the
requirements of these free-surface and interval multiple methods are satisfied, they can surgically
remove multiples without damaging proximal or interfering primaries.

A key requirement for amplitude prediction is the wavelet, i.e., the source signature in water. The
underlying physics behind the new free-surface and internal demultiple algorithms do not suffer
in the slightest from the presence of interfering events, multiples of different orders and any other
difficulties that derive from data from a complex geological subsurface. However, the current
industry standard for determining the wavelet, the energy minimization adaptive subtraction, e.g.,
Verschuur et al. (4), and Carvalho et al. (1), while many times useful, can precisely fail when the
multiple removal methods they are meant to serve have their greatest intrinsic strengths.

This fact derives and motivates the search for a wavelet estimation methods that avoids the pitfalls
and limitations of the current best practice and rests on as from a wave theoretical basis/foundation
as the multiple removal methods they are meant to serve. The new method presented in this paper
is the first practical approach that can predict a wavelet directly from measurement of the total
field along the towed cable. The new procedure presented here is particularly well-suited for a
towed streamer at about 6 m below the free surface.

Weglein and Secrest (9) present a method for computing the scattered wavefield between the cable
surface and the free surface, and the reference wavefield below the cable surface, given both the
pressure and its normal derivative along the cable. Tan (3) and Osen et al. (2) show that the
wavelet due to an isotropic source can be determined from pressure on the measurement surface
and an extra hydrophone between the measurement surface and the free surface. Tan (3) observes
that in practice it is possible to well-estimate the wavefield above a single towed streamer for points
not directly under the source. Using this wavefield prediction formula, the wavelet can in principle
be estimated from only a single cable acquisition (8). However, the integral computed for wavelet
estimation requires data along the cable including the region excluded by Tan’s prediction. The
purpose of the research described here is to develop and test a new source wavelet estimation
algorithm that requires only the pressure on the cable. In the following, we : (1) first derive the
wavelet estimation formula; (2) show how to predict normal derivatives of the wavefield above the
cable; (3) then use these ingredients to provide a new way to estimate the source wavelet; and (4)
provide numerical examples that exemplify the wavelet estimation and its use and added value for
free-surface multiple removal.
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2 Wavelet estimation

In this section, we present a wavelet estimation method that does not require any a prior assumption
about the earth or the wavelet. It is based on the acoustic wave equation and it only requires the
pressure measured along the cable, i.e., no borehole measurements, extra hydrophones or dual
streamers. We start with the wave equation for the pressure, P(~r′, ~rs, ω) in the actual medium
with variable velocity and constant density in the frequency domain

∇2P(~r′, ~rs, ω) +
ω2

c2(~r ′)
P(~r′, ~rs, ω) = A(ω)δ(~r ′ − ~r s), (1)

where ~r ′ is any point in a half space below the free surface, ~rs is the source location (see Figure 1),
A(ω) is the source signature, that is, the quantity we seek to determine. ω is the angular frequency,
and c(~r ′ ) is the actual velocity at position ~r ′ . P(~r′, ~rs, ω) is the total pressure wavefield.

Characterizing the actual medium velocity c(~r ) in terms of the reference wave speed c0 and the
variation in the index of refraction (Figure 2)

1
c2(~r )

=
1
c2
0

[1− α(~r )], (2)

where α(~r ) is used to characterize the difference between the actual and reference media. Now we
introduce the Green’s function GD

0 (~r , ~r ′ , ω), in a homogeneous medium bounded by a free surface
with an impulsive source δ(~r −~r ′ ). The Green’s function satisfies the differential equation (3), and
boundary condition (4) at the free surface

∇2GD
0 (~r , ~r ′ , ω) +

ω2

c2
0

GD
0 (~r , ~r ′ , ω) = δ(~r − ~r ′ ), (3)

GD
0 (~r , ~r ′ , ω)|r=F.S. = 0. (4)

We define
GD

0 (~r , ~r ′ , ω) = Gd
0(~r , ~r ′ , ω) + GFS

0 (~r , ~r ′ , ω),

Where Gd
0(~r , ~r ′ , ω) is the direct propagating, whole-space Green’s function in water, and GFS

0 (~r , ~r ′ , ω)
is the additional part of the Green’s function due to the presence of the free surface, see Figure (3).
All Green’s functions are causal.

∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)∇2GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)∇2P(~r′, ~rs, ω)

]
=

∫∫

S

ds′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
, (5)

where integral surface S is the enclosed surface of volume V .

Substituting the wavefield P(~r′, ~rs, ω) from equation (1) and the Green’s function GD
0 (~r , ~r ′ , ω) into

Green’s theorem (5), characterizing c(~r ′ ) in terms of c0 and the perturbation α(~r ′ ) as expressed
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in equation (2), we have
∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)∇2GD

0 (~r , ~r ′ , ω)−GD
0 (~r , ~r ′ , ω)∇2P(~r′, ~rs, ω)

]

=
∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)δ(~r − ~r ′ )− ω2

c2
0

GD
0 (~r , ~r ′ , ω)α(~r ′ )P(~r′, ~rs, ω)

]

−
∫∫∫

V

d~r ′
[
A(ω)GD

0 (~r , ~r ′ , ω)δ(~r ′ − ~rs)
]
. (6)

We choose the integral volume V to be the region between the free surface (F.S.) and the measure-
ment surface (M.S.) (Figure 1). Furthermore, notice that the second term on the right-hand side
of equation (6) will be zero, since all the scattering points α(~r ′ ) are outside of the integral volume
V . The first term on the right-hand side of equation (6) is zero because we choose ~r = ~rb below
the towed streamer (and ~r is outside V as well).

Representing the volume integral by the surface integral from Green’s theorem (5) and replacing ~r
with ~rb yields

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

S

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
. (7)

Since the Green’s function GD
0 (~r , ~r ′ , ω) is zero on the free surface, and since we assume that the

total field P(~r, ~rs, ω) will vanish on the free surface, then the enclosed integral surface S reduces
to a line integral along the measurement surface (M.S.). Then equation (7) becomes

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
. (8)

This is the wavelet estimation formula given by Weglein and Secrest (9). In order to use the
formula, we need the pressure wavefield and its normal derivative along the cable. However in
conventional marine seismic exploration, only the pressure wavefield is recorded, so we propose a
method to compute the required normal derivative based on the pressure only.

One of the wavelet estimation methods is through direct measurement, but this measurement will
be contaminated by the source ghost and the scattered wavefield when the water is not very deep,
or the extent of the wavelet is not short in time. However, the algorithm we propose here will
effectively remove the contribution of the source ghost and the scattered wavefield.

2.1 Extinguishing the scattered wavefield

Now we demonstrate that the scattered wavefield due to the sub-surface scatterers is extinguished
in equation (8). Let’s define

P(~r′, ~rs, ω) = P0(~r′, ~rs, ω) + Ps(~r′, ~rs, ω), (9)
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which states that the total wavefield P(~r′, ~rs, ω) could be expressed as the summation of the ref-
erence wavefield P0(~r′, ~rs, ω), the wavefield due to the actual source in a homogeneous velocity
reference medium, and the scattered field Ps(~r′, ~rs, ω), the wavefield due to the scatterers (de-
viation from the reference medium) in a homogeneous velocity reference medium. Substituting
equation (9) into equation (8), the formula for wavelet estimation gives

−A(ω)GD
0 (~rb, ~rs, ω)

=
∫∫

MS

d~s′
[
P0(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
P0(~r′, ~rs, ω)

]

−
∫∫

MS

d~s′
[
Ps(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
Ps(~r′, ~rs, ω)

]
. (10)

We will prove that the scattered portion in equation (10) is zero. This means that the contribution
for the wavelet estimation due to the scattered wavefield Ps(~r′, ~rs, ω) will be zero.

In the homogeneous medium, the scattered (reflected) wavefield satisfies the following equation

∇2Ps(~r′, ~rs, ω) +
ω2

c2
0

Ps(~r′, ~rs, ω) =
ω2

c2
0

α(~r ′ )P(~r′, ~rs, ω). (11)

Substituting the scattered wavefield Ps(~r′, ~rs, ω) and Green’s function GD
0 (~r , ~r ′ , ω) into Green’s

second identity, it is easy to prove that the surface integral of the scattered wavefield in equation
(10) is zero. Hence equation (8) is simplified to be

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

MS

d~s′
[
P0(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
P0(~r′, ~rs, ω)

]
. (12)

Therefore we have proven that the wavelet is only related to the reference wavefield P0(~r, ~rs, ω) in
the half space, and the scattered field is filtered out.

2.2 Extinguishing the source ghost

After extinguish the effect of the scattered wavefield, we proceed by proving that the contribution
of the source ghost to the wavelet estimation formula is also extinguished, and that only the direct
wavefield due to the actual source is used to compute the wavelet. Let’s define the reference
wavefield P0(~r′, ~rs, ω) as

P0(~r′, ~rs, ω) = Pd
0(~r

′, ~rs, ω) + PFS
0 (~r′, ~rs, ω), (13)

where Pd
0(~r

′, ~rs, ω) is that portion of the reference wavefield that travels directly from the source to
the receiver without reflecting off the free surface (in a homogeneous whole space) and PFS

0 (~r′, ~rs, ω)
is that portion of the reference wavefield that only exists due to the presence of the free surface. That
is the source ghost (see Figure 3). Pd

0(~r
′, ~rs, ω) and PFS

0 (~r′, ~rs, ω) satisfy the following equations
respectively

∇2Pd
0(~r

′, ~rs, ω) +
ω2

c2
0

Pd
0(~r

′, ~rs, ω) = A(ω)δ(~r ′ − ~rs), (14)
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∇2PFS
0 (~r′, ~rs, ω) +

ω2

c2
0

PFS
0 (~r′, ~rs, ω) = −A(ω)δ(~r ′ + ~rs). (15)

Note in equation (15), we assume the source ghost was created by an imaged source A(ω) across
F.S. with opposite polarity. Substituting equation (13) into equation (12) yields

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

MS

d~s′
[
Pd

0(~r
′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
Pd

0(~r
′, ~rs, ω)

]

+
∫∫

MS

d~s′
[
PFS

0 (~r′, ~rs, ω)
∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
PFS

0 (~r′, ~rs, ω)
]

. (16)

Substituting PFS
0 (~r, ~rs, ω) and the Green’s function GD

0 (~r , ~r ′ , ω) into Green’s theorem. If we choose
the same integral domain as before, i.e. the one bounded by the free surface and the measurement
surface (Figure 3), and since ~r = ~rb is below M.S., and −~rs is above F.S., we have

∫∫

S

d~s′
[
PFS

0 (~r′, ~rs, ω)
∂

∂n
GD

0 (~r , ~r ′ , ω)−GD
0 (~r , ~r ′ , ω)

∂

∂n
PFS

0 (~r′, ~rs, ω)
]

= 0.

Therefore equation (16) becomes

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

MS

d~s′
[
Pd

0(~r
′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
Pd

0(~r
′, ~rs, ω)

]
.

(17)

Equation (17) verifies that the wavelet below M.S. is extracted only from the direct wavefield
Pd

0(~r, ~rs, ω) in the whole space, i.e. the source ghost is also filtered out.

We have proven that both the scattered wavefield and the source ghost wavefield are annihilated,
so the wavelet obtained through equation (8), the formula for wavelet estimation, is determined
only by the direct wavefield portion of the total field. If we can separate the reference wavefield
from the total wavefield, then it is simpler to use equation (12) to estimate the wavelet.

3 Normal derivative of the wavefield

In this section, we derive the normal derivative of the wavefield based on the pressure wavefield
itself only. That is required for the wavelet estimation equation (8). Let’s first build the Green’s
function, GDD

0 (~r , ~r ′ , ω), that satisfies the boundary condition (19) on both the free surface (F.S.)
and the measurement surface (M.S.) in the homogeneous reference medium having velocity c0, is
the solution to the equation (18):

∇2GDD
0 (~r , ~r ′ , ω) +

ω2

c2
0

GDD
0 (~r , ~r ′ , ω) = δ(~r − ~r ′ ), (18)

GDD
0 (~r , ~r ′ , ω)|~r =F.S.,M.S. = 0. (19)

where ~r is chosen to be inside the volume V enclosed by the free surface (F.S.), the measurement
surface (M.S.), and two infinite semi-circles connecting F.S. and M.S. (see Figure 1).
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Substituting P(~r′, ~rs, ω) in equation (1) and GDD
0 (~r , ~r ′ , ω) in equation (18) into Green’s theorem

yields
∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)∇2GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)∇2P(~r′, ~rs, ω)

]
=

∫∫

S

ds′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
, (20)

where integral surface S is the enclosed surface of volume V .

Substituting equation (1) and (18) into the left-hand-side of equation (20), and using equation (2)
yields

∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)∇2GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)∇2P(~r′, ~rs, ω)

]

=
∫∫∫

V

d~r ′
[
P(~r′, ~rs, ω)δ(~r − ~r ′ )− ω2

c2
0

GDD
0 (~r , ~r ′ , ω)α(~r ′ )P(~r′, ~rs, ω)

]

+
∫∫∫

V

d~r ′
[−A(ω)GDD

0 (~r , ~r ′ , ω)δ(~r ′ − ~rs)
]
. (21)

As shown in Figure (1), since the scatterers α(~r ′ ) are outside the volume integral domain V , the
second term on the right-hand-side of equation (21) will be zero. Applying the sifting property of
the Dirac delta function, and combining equation (21) and (20), we obtain

P(~r, ~rs, ω)−A(ω)GDD
0 (~r , ~rs, ω)

=
∫∫

S

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)−GDD
0 (~r , ~r ′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
. (22)

Since the Green’s function GDD
0 (~r , ~r ′ , ω) satisfies Dirichlet conditions on both F.S. and M.S.,

and we are assuming that P(~r′, ~rs, ω) = 0 on the free surface and that the contribution from the
vertical sides of the volume V are negligible, then only the pressure term at the measurement
surface remains. Hence,

P(~r, ~rs, ω)−A(ω)GDD
0 (~r , ~rs, ω) =

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)
]

. (23)

As GDD
0 (~r , ~rs, ω) is approximately zero when ~r approaches M.S., the second term on the left-hand-

side of equation (23) can be ignored in comparison with the other terms. This results in the key
observation, that is, the wavefield above the M.S. can be predicted based on only the wavefield on
the cable, and it is almost compact for frequencies less than a cut-off frequency. For a cable depth
of 6 m and water velocity 1500 m/s, the cut-off frequency is 125 Hz. For frequencies below the
cut-off, the Green’s function decays exponentially with horizontal distance by Tan (3).

However, just under the source, as ∂
∂nGDD

0 (~r , ~rs, ω) is not vanishingly small for a typical marine
survey acquisition, we can not ignore its contribution, even if ~r is close to M.S. To predict the
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normal derivative of the wavefield at M.S., we propose taking the normal derivative of equation
(23) directly without dropping A(ω)GDD

0 (~r , ~rs, ω) term. Hence

∂

∂z
P(~r, ~rs, ω)−A(ω)

∂

∂z
GDD

0 (~r , ~rs, ω) =
∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂2GDD
0 (~r , ~r ′ , ω)
∂z∂z′

]
. (24)

4 New Wavelet estimation

In this section, we present a new method to estimate the wavelet. Rewriting the wavelet estimation
equation (8) and prediction equation (23) as following, for wavelet estimation,

−A(ω)GD
0 (~rb, ~rs, ω) =

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂n
P(~r′, ~rs, ω)

]
, (25)

for prediction equation,

P(~r, ~rs, ω)−A(ω)GDD
0 (~r , ~rs, ω) =

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)
]

. (26)

As the wavelet estimation formula given by equation (25) is the same as that provided by the
wavefield prediction formula in equation (26) evaluated on the cable (as in (5)), they are linearly
dependent, so we can not use equation (26) to predict the normal derivative on the cable, and
substitute it into equation (25).

In order to use equation (8) to calculate the wavelet below the measurement surface, we require
the normal derivatives of the wavefield under the source, so we modify the idea of calculating
the normal derivatives above the cable by making an alteration to the equation by deliberately
introducing some perturbation. In our case we choose the surface above the cable, and obtain the
normal derivatives there without dropping the wavelet term A(ω)GDD

0 (~r , ~rs, ω) in equation (24),
regarding them as the derivatives on the cable, and then substitute them into the Weglein-Secrest
equation (8).

Consider the equation,
A~x = ~b

If |A| = 0, in order to solve it, we add some perturbation to the matrix

(A + ε)~x = ~b,

then find the solution through a reverse operation

~x = (A + ε)−1~b.

In our situation, we choose

∂

∂z
P(~r = FS,~rs, ω) ≈ ∂

∂z
P(~r = PS,~rs, ω).
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where P.S. is a pseudo measurement surface above M.S.. We also assume that the derivative of the
wavefield is continuous, so that when P.S. approximates to M.S., we assume that the derivative at
P.S. will approximate the one at M.S.

Hence we approximate the required derivative at P.S. by

∂

∂z
P(~r, ~rs, ω) = A(ω)

∂

∂z
GDD

0 (~r , ~rs, ω) +
∂

∂z
T(~r, ~rs, ω) (27)

where
∂

∂z
T(~r, ~rs, ω) =

∂

∂z

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GDD

0 (~r , ~r ′ , ω)
]

.

Substituting equation (27) into equation (8), and rearranging the terms, we achieve

−A(ω)


GD

0 (~rb, ~rs, ω) +
∫∫

MS

d~s′GD
0 (~rb, ~r

′ , ω)
∂

∂z
GDD

0 (~r , ~rs, ω)


 ≈

∫∫

MS

d~s′
[
P(~r′, ~rs, ω)

∂

∂n
GD

0 (~rb, ~r
′ , ω)−GD

0 (~rb, ~r
′ , ω)

∂

∂z
T(~r, ~rs, ω)

]
. (28)

Compared with equation (8), equation (28) has one extra term, that takes into account the con-
tribution under the source for derivative. This is the equation we are going to use to estimate the
wavelet below the cable.

The triangle relationship states that measured values of P(~r , ~rs, ω) and its normal derivative along a
cable and A(ω) satisfy exactly equation (8). One might think that the wavefield prediction formula,
equation (24), when evaluated on the cable, provides a second independent relationship that would
allow the wavelet to be directly determined from along the cable. However, Weglein and Amundsen
Weglein and Amundsen (5) demonstrate that these are the same relationship. If you temporarily
ignore this fact, and substitute equation (24) into equation (8) to eliminate ∂

∂nP(~r , ~rs, ω), then when
~r approaches the cable, the inverse of solving the wavelet in equation (28) is “unstable”. To avoid
this instability in the inversion, we suggest here that values above the cable for ∂

∂nP(~r , ~rs, ω) and
∂
∂nGDD

0 (~r , ~rs, ω) are substituted for those at the cable in the integral to avoid the singularity. This
has the effect of avoiding a singular division by solving a nearby perturbed problem in anticipation
that this will lead to a stable approximate solution.

5 Synthetic examples

We build a model in the homogeneous medium with three scatterers. The source is 2 m below the
free surface, the source wavelet is a Ricker wavelet with central frequency f=40 Hz, the cable is 6
m below the free surface, the receiver interval is 2 m, there are a total of 200 receivers, the time
sample interval is 1 ms, and the predicted surface is changing from 0.3 m to 2.5 m above M.S.

Figure 4 shows all the estimated wavelet results with prediction surfaces changing from 0.3 m to
2.5 m above M.S. by equation (28), we see the estimated wavelet at 0.7 m matches the input.
Figure 5 indicates the error with respect to the distance of the prediction surface from M.S., and
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Figure 6 shows the error with respect to the ratio of the distance of the prediction surface to the
wavelength. It is shown that the least error location is about 0.7 m above M.S in Figure 5, the ratio
is about 0.02 in Figure 6. When you get closer to M.S., the error rapidly increases. This means
the equation here approximates an unstable state. When it is farther from the M.S., because the
normal derivative has a greater error, the error in the wavelet estimation also increases.

To test the stability (simulate the cable depth changes due to, e.g., sea tide, wind) of the wavelet
estimation equation (28), we assume the cable depth has ±15% error, but still think the cable is at
its original depth, then use equation (28) to estimate the wavelet. The results of the comparison
between the correct cable depth, and two error depths, are shown in Figure 7. All of the three
estimated wavelets are close to the actual input wavelet.

We test synthetic datasets with reflectors at 40 m, 60 m, and 80 m, the water layer of velocity
1500 m/s overlying a half space solid of velocity 2000 m/s. We add 10% random noise to the 40 m
model. The models were provided without knowing the wavelet, and after estimating the wavelet,
we compare it with the actual wavelet. The acquisition geometry is the same as before. Then
equation (28) is used to estimate the wavelet, the results are shown in Figure 8. There are some
differences at the peak and trough of the wavelet. The one estimated from the 80 m model has
artifacts that starts at about 110 ms, the 40 m model has artifacts closer to the source, that is
due to the reflection interference with the direct wavefield. The method is found to be stable with
about 10% random noise.

We also test the multiple attenuation using the energy-minimum-method when the primary inter-
feres with multiple (see Figure 9). As the current energy-minimum-method assumes that the total
energy of the demultipled data is less than the total energy of the input, however in our specially
designed example, the assumption is broken, because the total energy of the demultipled data is
more than the total energy of the input. The results are shown in Figure 10 and 11. Figure 10
is the demultiple without the wavelet; Figure 11 is the demultiple with the estimated wavelet, the
primary was preserved.

6 Conclusions

A method for estimating the wavelet directly from the data on a towed streamer was recently
proposed by Weglein et al. (10). That method proposed using the wavefield prediction method
of Tan (3) to approximate the needed normal derivative along the cable. However, the wavelet
method requires an integral over all receivers for a given shot, and the prediction is not accurate
under the source. In order to use equation (8) to calculate the wavelet below the measurement
surface, we require the normal derivatives of the wavefield under the source, and we modify the
idea of calculating the normal derivatives above the cable by making an alteration to the equation
by introducing some perturbation.

In this paper, we addressed this problem by keeping the term that is small away from the source
to achieve an algorithm that is valid for all offsets needed in the integral.

An intrinsic instability in this approach is addressed by seeking an approximate solution that re-
places the unstable inversion by a “nearby” (i.e., perturbed) operation. Tests for different prediction
depths and noise stability on synthetic data are encouraging.
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Figure 1: Sketch of the marine survey: ~rs is the source position, ~r is above M.S., ~rb is below M.S., and the integral

volume V is the region between F.S. and M.S., the scatter α is outside of V.

Figure 2: The actual heterogeneous medium (left) can be parameterized as a homogeneous velocity reference medium

(right) with embedded point scatterers.
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Figure 3: The Green’s function GD
0 (~r , ~rs, ω) is the summation of Gd

0(~r , ~rs, ω), direct propagating part, and

GFS
0 (~r , ~rs, ω), the source ghost part. The corresponding wavefield is P0(~r, ~rs, ω), Pd

0(~r, ~rs, ω) and PFS
0 (~r, ~rs, ω) re-

spectively.

Figure 4: Wavelet estimation for different prediction depths changing from z=0.3 m to 2.5 m above the measure

surface, the estimated wavelet at z = 0.7 m matches the input wavelet very closely.
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Figure 7: Wavelet estimation with cable depth ±15% error, but still assume the cable depth is original in estimation.

The estimated wavelet is close to the input even if the cable depth has ±15% error.

Figure 8: Wavelet estimation from three models: 40 m, 60 m, and 80 m reflector, 10% random noise is added to

the 40 m model. The estimated wavelets are close to the input, but show a tail. The tail in 40 m model is closer to

the wavelet due to the interference of the direct wavefield and reflection wavefield.
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Figure 9: Multiple interferes with primary, P1 represents first primary, P2 represents second primary, M1 represents

first order free surface multiple. Vertical axis is time in seconds.

mation, demultiple, and imaging. In 70th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, pp. 2413–2415. Soc. Expl. Geophys.
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Figure 10: Demultiple using energy-minimum-method without the wavelet, P2 is the primary, M1 is the multiple.

When the multiple was attenuated, the energy of the primary increases, that’s why the primary also is attenuated.

Vertical axis is time in seconds.

26



Wavelet estimation from towed-streamer pressure measurements MOSRP04

Figure 11: Demultiple with the wavelet, P2 is the primary, M1 is the multiple. When the multiple was attenuated,

the primary was preserved. Vertical axis is time in seconds.

27



Extinction Theorem deghosting method using towed streamer
pressure data: Analysis of the receiver array effect on deghosting
and subsequent free surface multiple removal

Jingfeng Zhang and Arthur B. Weglein

Abstract

Deghosting is a prerequisite procedure for free surface multiple removal (FSMR), internal
multiple attenuation/elimination, imaging and inversion (Weglein et al., 2003). The effective-
ness of deghosting directly affects the performance of these methods. Last year, we presented
numerical tests of the deghosting algorithm given by Weglein et al., (2002). Those numerical
tests demonstrate the accuracy of the predicted up-going field at the receiver side. This year,
numerical tests of the totally deghosted field (i.e. down-going at source side and up-going at
receiver side) are presented.

First, we use point receiver data to perform deghosting since wave theory assumes point re-
ceiver data. Subsequently, receiver array data is supplied to the deghosting algorithm (Receiver
arrays are widely used in practice and hence it is critical to characterize their effect). Finally
the first order FSMR (Weglein et al., 1997; 2003) procedure is applied to the point receiver and
receiver array data respectively in order to further characterize the effect of the receiver array.
The effectiveness of the deghosting and FSMR algorithm is demonstrated by the numerical tests.
The algorithms give useful results for both data sets. It is shown that the deghosting results
are accurate when supplied with point receiver data, in other words, the direct wave is removed
and the deghosted scattered field is predicted accurately (both in phase and amplitude). Using
receiver array data, we find that (1) the direct wave needs to be removed separately; (2) the
phase of the deghosted scattered field is very close to the phase of the numerically determined
exact field and (3) there is a slight error in the amplitude at non-zero offset. The first order
FSMR method is applied to the two deghosted data sets. We find that the first order free surface
multiple is removed completely from the point receiver data. In the case of the receiver array
data, the first order free surface multiple is reduced effectively, although not eliminated.

1 Introduction

In marine seismic exploration, reflection data is obtained from the wavefield, generated with a
source of energy (e.g., an air gun), which propagates into the earth. When the wavefield reaches a
reflector, a portion of it is reflected upward towards the receivers which are just below the air-water
interface (free surface or FS). From a wave theory point of view, point receivers are supposed to
be used. However, in order to improve the signal/noise ratio, receiver arrays are widely used in
practice. A receiver array is a set of receivers whose records are summed together so that the signal
can be enhanced and the random noise suppressed. This summation will inevitably damage the
actual wavefield. So it is critical to characterize its effect on any wave theoretical approach.

¿From all the events recorded in the data, we can identify the following events as ghosts: (1) Direct
arrival ghost: the wave that goes up from the source, reflects from the free surface and then goes to
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the receiver. (2) Source ghosts: the waves that began their history as upgoing waves (3) Receiver
ghosts: the waves that ended their propagation as downgoing waves.

A common sequence of data processing is source wavelet estimation/deconvolution, deghosting, free
surface multiple removal (FSMR), internal multiple attenuation/elimination, depth imaging and
inversion (characterization of medium properties). The order of these operations is important since
the later tasks need the results of the earlier ones as their inputs and hence, the performance of
the later operations are directly affected by the accomplishment of the earlier ones. Some recently
developed processing techniques such as imaging without velocity (Shaw et at., 2004, Liu et al.,
2004) and nonlinear inversion (Zhang et al., 2004) put a very high bar on the data preprocessing
(wavelet estimation, deghosting and multiple removal) since those techniques engage the data fully
and non-linearly (Shaw et al., 2004) which includes the source wavelet and a chosen reference
medium’s properties. For example, in imaging without velocity, the method is non-linear in the
scattered field, using non-linearly the amplitude of certain events in the data as well as their arrival
time; it requires effective data preprocessing.

In this paper, assuming the source wavelet is available (Weglein and Secrest, 1994, Guo et al.,
2005), we study the effect of the receiver array on our deghosting and free surface multiple removal
algorithm. Only point sources are considered in this paper, although source arrays are generally
applied in practice. The array effect on the source wavelet estimation procedure is studied by Guo
et al., (2005).

In the following chapters, we will briefly review our deghosting algorithm and FSMR procedures,
then we will present the numerical test results, which are followed by the concluding remarks.

2 Theory

As an important data processing procedure, deghosting has been widely discussed (Schneider et
al., 1964, Sφnneland and Berg, 1985, Robertsson and Kragh, 2002, Amundsen et al., 2001; 2005).
The deghosting method we use is:

P deghosted(r, rs, ω) =
∫

MS

(
P (r′, rs, ω)

∂G+
0 (r, r′, ω)
∂n′

−G+
0 (r, r′, ω)

∂P (r′, rs, ω)
∂n′

)
· dS′, (1)

where MS denotes the measurement surface and G+
0 (r, r′, ω) is the causal Green’s function in the

reference medium, satisfying

∇′2G0(r, r′, ω) +
ω2

c2
0

G0(r, r′, ω) = δ(r− r′). (2)

Eq.(1) computes the receiver side up-going field. The same integral on the source side will get rid
of the source ghost. This deghosting procedure only requires the pressure field, P , and its vertical
derivative ∂P

∂n′ . However, ∂P
∂n′ is usually not measured in practice. ∂P

∂n′ can certainly be predicted if
the source is below the measurement surface (MS) (Amundsen et al., 1995). But for the case where
the air gun is located between the free surface and measurement surface, the source wavelet (A(ω))
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must be known in order to predict P and its derivative (Tan, 1992, Osen et al., 1998, Weglein et
al., 2000):

P (r, rs, ω) = A(ω)GDD
0 (r, rs, ω) +

∫

M.S.
P (r′, rs, ω)

∂

∂z′
GDD

0 (r′, r, ω)dS′, (3)

∂P (r, rs, ω)
∂z

= A(ω)
∂GDD

0 (r, rs, ω)
∂z

+
∫

M.S.

P (r′, rs, ω)
∂2GDD

0 (r, r′, ω)
∂z′∂z

dS′. (4)

where GDD
0 is the Green’s function that satisfies Eq. (2) and vanishes both on the FS and on the

MS.

There is a relationship called the triangle relationship among the pressure wavefield, P , its normal
derivative dP

dz on the MS and the wavelet A(ω) (Weglein and Secrest, 1994, Amundsen et al.,
1995). Knowing any two of the three variables, we can predict the third one. In principle, the
triangle relationship says that the source wavelet can not be obtained exactly from the pressure
measurements on the MS only. A very good approximation, however, can be obtained by the
method proposed by Guo et al., (2005). This perturbed technique implies that, essentially, the
deghosting algorithm we use can be performed only from the pressure measurements on the MS.

After the deghosting procedure is completed, we can perform the FSMR. Various methods (Barr et
al., 1989, Amundsen 2001) have been proposed to this end. The FSMR procedure we use is derived
from the inverse scattering series (Weglein et al., 1997; 2003). It is a model type independent pro-
cedure so it works for acoustic/elastic/nonelastic, isotropic/anisotropic, absorptive/non-absorptive
medium, and makes no assumptions regarding the structure of the earth. The model type indepen-
dent characteristic is indicated by the use of V1(k1, k2, ω) instead of V1(k, ω) or any specific form
of potential in the derivation. This algorithm removes free surface multiples through an order by
order iteration. The first order FSMR exactly eliminates the first order free surface multiples and
at the same time alters the higher order free surface multiples so that they can be removed by
higher order operations. The formulas are given by:

D′
n(kg, ks, ω) =

2
iA(ω)

∫ ∞

−∞
dkqeiq(zq+zs)D′

1(kg, k, ω)D′
n−1(k, ks, ω), (5)

n = 2, 3, 4, .....,

and

D′(kg, ks, ω) =
∞∑

n=1

D′
n(kg, ks, ω), (6)

where D′
1(kg, ks, ω) ≡ D′

1(kg, zg, ks, zs) is the deghosted data containing primaries, free surface
multiples and internal multiples. The variables kg and ks are Fourier conjugates of xg and xs

respectively and zg and zs are the depths of the receivers and sources respectively. D′(kg, ks, ω)
represents the data after FSMR. The mathematical details can be found in Weglein et al. (1997;
2003) and Carvalho (1992). For a 1D medium, the integral in Eq.(5) will reduce to a simple
multiplication since D(kg, zg, ks, zs, ω) = 0 unless kg = ks.
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In Eq.(5), the coefficient is different from the one provided in the references due to different Fourier
transform conventions. Eq.(5) is derived from the following convention:

D(kg, zg, ks, zs, ω) =
1
2π

∫ ∞

−∞
e−ikgxgD(xg, zg, xs, zs, ω)eiksxs dxg dxs (7)

D(xg, zg, xs, zs, ω) =
1
2π

∫ ∞

−∞
eikgxgD(kg, zg, ks, zs, ω)e−iksxs dkg dks. (8)

Note that different Fourier transform conventions are chosen on source and receiver sides.

3 Numerical tests for towed streamer data

The numerical tests presented in this report, are based on a simple 1D acoustic model. Using the
Cagniard-de Hoop method (Aki and Richards, 2002), we generate synthetic data for the following
model (Figure 1): a free surface (FS) overlies 300m of water (wave speed 1500m/s), below which is
a homogeneous acoustic half space characterized by wave speed 2250m/s. The density is constant.
The source is located at (0,2m) and the source wavelet is a Ricker wavelet (Figure 2). The advantage
of the Cagniard-de Hoop method is that we can accurately calculate any specific event we are
interested in so that we can compare it with the results predicted by our deghosting and FSMR
algorithms.

3.1 Array effect on deghosting

The first test’s objective is to determine the accuracy of the deghosting result obtained from point
receiver data. For this test, the receiver interval is 1m. Since the medium is 1D, a single shot-record
is sufficient to perform deghosting on both source and receiver sides. The input data contains the
direct wave, the primary, multiples and their related ghosts. Here the direct wave (G0) contains a
component that travels directly from the source to the receiver (Gd

0) and a component that travels
upward from the source to the free surface and is then reflected back to the receivers (Gfs

0 ). The
data for the towed streamer cable (6m) is shown in Figure 3. The source and receiver deghosted
results at several offsets are presented in Figure 4. Clearly, using point receiver data, the predicted
deghosting results agree very well with the exact results.

For the array data test, the receiver array configuration we use is called Guardian; its parameters
are shown in Figure 5. The records of the eight receivers are summed together with equal weights to
produce one record at the center location of the array. The record/group interval is 12.5m. Figure
3 shows the generated array data. There is a visible difference between the point receiver data and
the receiver array data. The deghosting results are compared with the exact results in Figure 6.
We find that the direct wave can not be removed at all of the four offsets. For the scattered field:

(1) at zero offsets, both the amplitude and the phase of the primary and the first order free surface
multiple are very accurate;

(2) at large offsets, the phase of the scattered field are roughly correct although there is a slight
error in the amplitude.
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For the scattered field, the above results are explainable by considering how the receiver array
changes the data at different offsets. At zero offset, for example, the receiver array is tangential
to the wavefront. So the summation of the field produces less damage to the actual field. While
for large offset, the angle between the array and the wavefront is bigger and thus, the field is more
severely damaged. Therefore the results at zero offsets are better. The higher order free surface
multiples are very weak at zero offsets so they are easily swamped by numerical artifacts.

For the direct wave, although the wavefront is tangential to the array at zero offset, the wave
field at zero offset varies rapidly in space. Hence the damage of the array to the wave field is
non-trivial. While at large offsets, the wavefront is almost vertical to the array. Hence compared
to the scattered field, the direct wave is more affected by the receiver array. Another reason that
the receiver array affects the direct wave is that the large receiver interval (12.5m) is too big to
sufficiently measure the quickly varying direct wave at small offsets.

Since the direct wave can not be effectively removed using array data, it would be advisable to
remove it before deghosting. We can either mute it or predict the direct wave and subtract it from
the original data, since we assume we have the source wavelet. Which method to choose depends on
the situation. For shallow water case, for example, the prediction-subtraction method is preferred
since the direct wave overlaps with the scattered field very early. When the water is deep, as is is
in our model, we can simply mute off the direct wave. The deghosting results after the direct wave
is eliminated are shown in Fig(7).

These numerical tests have demonstrated the effectiveness of the deghosting algorithm. When
supplied with point receiver data, very accurate results are obtained. With receiver array data,
the algorithm still produce useful results. Whether this usefulness is adequate or not depends on
the objective. If the amplitude is not critical (structure mapping, for example), then the receiver
array data is sufficient. For cases like inversion, where the amplitude is important, the angle/offset
dependent small error in the amplitude could produce serious error in the results.

3.2 Array effect on free surface multiple removal (FSMR)

The above point receiver deghosting results are put into Eq. (5) and Eq. (6) to remove the free
surface multiple. Only the first order free surface multiple removal is performed. After the FSMR
operation on the deghosted data, we obtain the first order FSMR results (Figure 8). Obviously,
the primary remains untouched and the first order free surface multiples have been eliminated.

For receiver array data, after the elimination of the direct wave and deghosting, the FSMR is
performed. Results are shown in Figure 9. Just like the deghosting case, the FSMR result is very
good at zero offset. At larger offsets, there is a small error in the amplitude of the primary, which
occurs because the small error already exists in the deghosting results. We can also see that the
first order free surface multiple has been effectively reduced, although it has not been eliminated.
This effectiveness is adequate or not again depending on the objectives of the operations to follow
it. For example, if the primary and the multiples are not overlapping and one just want to separate
the primary and multiples for interpretation, then the receiver array data result is adequate. The
same result will not be adequate, however, if the interested primary coincidentally overlaps with
this particular free surface multiple. This result can also be regarded as an immediate example of
how the deghosting results directly affect the subsequent processing steps.
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4 Conclusions

Both point receiver and receiver array data for a simple 1D medium have been supplied to the
deghosting and FSMR algorithm in order to characterize the effect of the receiver array. Useful
results have been obtained for both data sets. It is shown that when point receiver data is used,
both the deghosting and FSMR results agree very well with the exact ones.

When receiver array data is provided, the direct wave has to be removed separately before deghost-
ing. Compared to the exact results, the phase of the deghosting results of the scattered field are
very accurate while a small error in the amplitude is observed. The first order free surface multiple
is significantly reduced after performing a FSMR procedure.

The effect of those small errors in the deghosting and FSMR results depends on the subsequent
processing objectives. For the deghosting algorithm, if the results are just used to perform structure
mapping, then those small error could be tolerable. Serious prediction errors could occur for cases
like inversion where amplitude is critical. The result of FSMR faces the same situation.
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Appendix: Numerical test procedures

In this appendix, we would like to briefly list the steps that we performed in deghosting and FSMR.

Deghosting:

1.D(xg, zg, xs, zs, t) → D(xg, zg, xs, zs, ω);

2 f by f :

Predict P (xg, z1, xs, zs, ω) and ∂P (xg ,z1,xs,zs,ω)
∂z , where zs < z1 < zg;

Predict the up-going field at the receiver side P (xg, z2, xs, zs, ω), where z2 < z1;
Switch the source and receiver coordinates: xg ⇔ xs,z2 ⇔ zs: P (xg, z2, xs, zs, ω) → P (xs, zs, xg, z2, ω);
Predict P (xs, z3, xg, z2, ω) and ∂P (xs,z3,xg ,z2,ω)

∂z , where 0 < z3 < zs < z2;
Predict the up-going field at the source side P (xs, z4, xg, z2, ω), where 0 < z4 < z3 < zs < z2;
Switch the source and receiver coordinates: xg ⇔ xs,z4 ⇔ z2: P (xs, z4, xg, z2, ω) → P (xg, z2, xs, z4, ω);

3. Fourier transform back to time domain: P (xg, z2, xs, z4, t)

Free Surface Multiple Removal (FSMR):

The input of the FSMR is the deghosting result: P (xg, zg, xs, zs, ω)
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Figure 1: One dimensional acoustic constant density medium.

1.P (xg, zg, xs, zs, ω) → P (kg, zg, ks, zs, ω);

2.Calculate the integrand of Eq. (5) and do the summation in Eq. (6);

3.P (kg, zg, ks, zs, ω) → P (xg, zg, xs, zs, ω);

4.Fourier transform back to time domain: P (xg, zg, xs, zs, t)
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Figure 3: Red solid: Point receiver data; Blue dash: Receiver array data.
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Figure 5: Diagram of Guardian receiver array.
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Figure 7: Red solid: Exact source-receiver deghosted results; Blue dash: Calculated deghosting results (using receiver
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Preface

Papers selected for this SEG reprint volume on multiple attenuation sample the geophysical litera-
ture from 1948 through 2003. For the past fifty-odd years the presence of multiply reflected energy
in seismic data has been a serious issue and challenge for geophysicists. It remains so today. Nev-
ertheless, the seismic exploration community has made dramatic progress in multiple attenuation.
This volume chronicles and examines the amazing history and evolution of methods for attenuat-
ing multiples. The papers are organized into nine thematic chapters, and appear chronologically
(sometimes within subtopics) within each.

The volume begins with a short introduction to some basic concepts of multiple attenuation. Next,
Chapter 1 focuses on the era when multiple reflections in seismic data were first clearly seen and
characterized. Interestingly, prior to the late 1940’s many geophysicists thought that multiples were
so weak that they would never be seen at all, much less be a significant problem. Chapter 2 describes
some of the first efforts at attenuating multiples – signal processing algorithms that deconvolve or
otherwise remove periodic events in seismic traces – as well as some more recent developments using
such approaches. In contrast, the papers in Chapter 3 describe methods that attenuate multiples
based on moveout discrimination or some other event characteristic that distinguishes them from
primary reflections. Papers describing the popular Radon transform-based method of multiple
attenuation appear in this chapter.

Chapters 4 and 5 describe two categories of multiple attenuation methods that are directed at ac-
commodating a fully multi-dimensional subsurface: (1) linear methods of modeling and subtracting
multiples that require an explicit or implicit model of the reflections that generate multiples; and
(2) nonlinear methods that do not require such a model. The latter of these represents a major
conceptual advance: the idea that, using nonlinear multi-dimensional wave equation-based meth-
ods, multiple reflections can be fully predicted from the information contained within a seismic
data set independently of any assumptions or knowledge about the subsurface. Once so predicted,
multiples can be subtracted from the original data, yielding a multiple-free result. Because prac-
tical applications based on this idea are relatively new, many geophysicists who read this volume
may not have been exposed to it during their formal education. Hence, following our Chapter 4
introduction we have included a brief tutorial section that explains the basic concepts of this type
of multiple prediction.

There are two complementary ways of thinking about nonlinear wave equation-based multiple pre-
diction. Chapter 4 covers the free-surface and interface model, and Chapter 5 the free-surface
and point scatterer model. Compared to earlier methods of multiple attenuation, these multiple
prediction schemes place certain conditions on the seismic experiment rather than requiring as-
sumptions about the nature of the subsurface. For example, the source signature must be known,
and, as in migration, the data set aperture becomes important. The papers in Chapter 6 discuss
some of the consequential difficulties and issues that must be dealt with to make nonlinear wave
equation-based multiple prediction practical for field data sets. In particular, many of the Chapter
6 papers describe ways of coping with the 3-D nature of the primary and multiple wavefields when
the acquisition experiment itself is not spatially sampled in a full 3-D sense.

The words “multiple attenuation” immediately make many geophysicists think of marine streamer
data. Chapter 7 reminds us that multiples are also an important problem for land data sets and
marine data recorded by methods other than horizontally towed streamers. Chapter 8 contains a
collection of tutorial papers that emphasize recent multiple attenuation concepts and methodologies.
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Finally, Chapter 9 presents an alternative approach to dealing with multiple reflections – using
them as signal to enhance the subsurface image rather than considering them as noise that must
be removed. The serious challenges facing such an endeavor are also described.

Editors of a reprint volume usually face two dilemmas: what criteria are used to select the papers
and how many papers should be included. Paper selection was difficult – and necessary – because
no reprint volume could contain all the worthy papers on a subject as broad as multiple attenuation.
Except for Chapters 1 and 9, we decided to include only papers that directly address the attenuation
of multiples. This basic criterion meant that papers about technology that could be used for
multiple attenuation, but that contained little or no discussion of multiple attenuation itself, were
not selected. Thus, for example, no papers on the fundamentals of the Radon transform appear
in this volume. Having established the basic criterion, we then selected papers that we considered
to be important and influential. We also polled some of our colleagues and acquaintances for
suggestions, especially for early papers about multiple attenuation. Finally, we scanned through
the references of selected papers, searching for additional papers that those authors had considered
important.

Our objective in this volume is to collect, synthesize, and provide a perspective for the literature
on multiple attenuation, an important cornerstone of seismic data processing. Not all of the papers
in this volume received a traditional peer review prior to their original publication. In recent years
papers in The Leading Edge, First Break, and the SEG and EAGE Expanded Abstracts have formed
an increasingly important repository of technical literature. We feel – and we hope that the readers
will agree – that including papers from those sources falls within our objective.
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Volume Introduction

Most of the papers in this reprint volume address the problem of multiple reflections that appear
in marine seismic data. In seeking to analyze such data, it helps to classify the recorded events
according to the reflections and propagations they have experienced. For typical towed streamer
exploration, both the seismic source and the receivers are deployed within the water layer. Figures
1, 2, and 3 show examples of various classes of events for streamer data. The first classification
separates events that have experienced the earth’s subsurface below the water layer from those that
have not. The latter category (Figure 2a) consists of two events:

• the direct arrival, which is energy that travels in a straight-line path from source to receiver,
and
• the direct arrival ghost, which is energy that propagates upwards from the source, reflects off
the water surface, and then straight to the receiver.

All other recorded events either propagate within the earth or at least encounter the earth at
the water bottom. (Seismic energy can reflect from sharp velocity or density contrasts within the
water layer. This happens only rarely, so such events are not considered in the classification scheme
described here.)

The category of events that experience the earth includes reflections, refractions, diffractions, mode
conversions, and an infinite variety of combinations thereof. These events can be further subdivided
into two main categories:

• events that propagate downwards from the source and are recorded as up-going waves at a
receiver, and
• events that either propagate upwards from the source and/or are recorded as down-going waves
at a receiver.

These latter events are called ghosts, of either source or receiver variety, respectively (Figure 2).

Excluding the ghosts, the remaining reflection events can be classified as either primary or multiple
depending on the number of upward reflections experienced:

• primary events experience one upward reflection (Figure 1a), and
• multiple events experience two or more upward reflections (Figures 1b-1f).

Here, an upward reflection is defined as one where the incident wave moves away from the measure-
ment surface (that is, the streamer) towards the reflector and the reflected wave moves away from
the reflector towards the measurement surface. The incident wave in a downward reflection moves
towards the measurement surface and then away from the measurement surface after reflection.
Reflections are possible that are neither upward nor downward by these definitions. An example
is shown at the right-hand side of Figure 3a. Nevertheless, traditionally, primaries and multiples
are defined only in terms of the number and location of upward and downward reflections in their
raypaths. The event in Figure 3a has one upward reflection, no downward reflections, and one
reflection that is neither; hence, it is a primary.

The final classification defines particular types of multiply reflected events based on the location of
their downward reflections:

• A multiple with one or more downward reflections at the free surface (that is, the water surface)
is called a free-surface multiple, independent of the rest of its trajectory.
• An internal multiple has all of its downward reflections below the free surface.
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Interbed multiple is a common alternative name for internal multiple. Note that although source
and receiver ghosts are free surface-related events that experience a downward reflection at the free
surface, they do not qualify as free-surface multiples because they were excluded at an earlier step
in the classification scheme.

Interbed multiple is a common alternative name for internal multiple. Note that although source
and receiver ghosts are free surface-related events that experience a downward reflection at the free
surface, they do not qualify as free-surface multiples because they were excluded at an earlier step
in the classification scheme.

Sound waves in the earth sometimes experience more complicated raypaths than alternating up
and down reflections. For example, events that do not easily fit into the classes described above
include those that experience refractions or diffractions within their history. The event in Figure 3b
has only one upward reflection, but that event is clearly not a primary. The need to accommodate
a broader range of events, coupled with advances in multiple attenuation theories and algorithms,
suggests the need for more general definitions:

• A prime event (or primary) is a recorded event that cannot be decomposed into other events
recorded within the same data set.
• A composite event (or multiple) is a recorded event that can be decomposed into a number of
other events that appear within the same data set.

The phrases “can be decomposed” and “cannot be decomposed” refer to whether or not the travel
time of the event in question can be expressed as sums and differences of the travel times of other
events within the data set (see Figure 3). The concept of “data set” refers to a complete set of shot
records that spans sufficient spatial aperture to record all of a multiple’s composite events. Note
that the decomposition of higher-order multiples can be accomplished in more than one way, and
can include events that are themselves multiples. For example, the multiple in Figure 3f can be
decomposed into primary events 1-3, 2-3, 2-4, and 4-5 or alternatively into a multiple event, 1-4,
and a primary event, 4-5. This more general scheme of classifying primary and multiple events
becomes important in Chapters 4 and 5, which include comprehensive methods that attenuate all
events that are composites within the measurement set, including event types beyond the simple
upward/downward reflection definition. Further details are presented in the Chapter 4 tutorial.

In the literature, one finds mention of multiple attenuation, elimination, and suppression. Gener-
ally, these terms are used interchangeably. In this volume, however, we assign specific definitions
to these terms. Attenuation and suppression are synonyms that refer to a process in which the
amplitudes of the multiple events in a seismic data set are reduced. Elimination refers to a process
in which at least one class of multiples is completely removed from a seismic data set. Thus, elim-
ination is a form of attenuation in which the amplitude reduction is complete. This distinction is
important. Some multiple removal algorithms are, at least in principle, eliminators, while others
are only attenuators. There is also an important and increasingly significant difference between an
explicit prediction of amplitude and phase (time) of a multiple and the assumption that whatever
falls on a given traveltime trajectory is a multiple to be eliminated. In practice even an elimina-
tion algorithm usually accomplishes only partial multiple removal because field data sets seldom
meet all of the prerequisites for elimination. This is an important issue, but it is unrelated to
the intrinsic capability of the algorithm. The distinction between the intrinsic capabilities of a
method and limitations imposed on those capabilities by external factors (such as data collection,
subsurface assumptions, etc.) is important for two reasons: an understanding of when application
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of a procedure is appropriate, and clarity in attributing lack of effectiveness to the proper cause,
thereby guiding those seeking better methods in the future.

In geophysics, as in all fields of science, progress sometimes appears to be somewhat chaotic.
Over a period of many years, however, an evolutionary pattern often emerges from the chaos.
Table 1 shows such a pattern for the discipline of multiple attenuation. The leftmost column
lists advances in the evolution of multiple attenuation that are presented in Chapters 2 through
5 of this volume. The next column indicates the complexity and realism of the physical models
that the attenuation methods can accommodate. More checks indicate higher complexity, realism,
and completeness of the physics behind the method. For example, algorithms that attenuate
multiples based on periodicity are based on a simple 1-D model of the subsurface, whereas moveout
discrimination methods are based on a more complex 2-D ray-tracing model. Together, these two
columns represent an overall trend: more complete, realistic physics allows significant advances,
and hence improvements, in multiple attenuation. Such improvements reduce the risk of producing
poor quality processed seismic data sets, and thus, ultimately, lower the overall risk of hydrocarbon
exploration itself. The third column ranks the complexity of the ancillary subsurface information
needed by each multiple attenuation method. For example, moveout discrimination requires a
nominal velocity profile, and, if one wishes to attenuate selected interbed multiples, the free-surface
and interface wavefield method requires specification of a multiple-generating horizon or region. The
fourth column describes the need for description of the seismic experiment, such as information
about the source signature and the receiver depths. Finally, the rightmost column indicates the
data acquisition and computational burden of each method.

Table 1 shows that as the complexity of the physical model that a method can accommodate
increases, the burden on data acquisition and processing likewise increases. Simply accommodating
a higher dimension of variability in the subsurface requires more thorough surface data acquisition,
regardless of the nature of the seismic processing algorithm. Consider the bottom row in the
table. Applying a true 3-D version of the free-surface and point scatterer method to attenuate all
multiples requires not only a massive computational effort, but also wide-aperture, full-azimuth
recorded data. A skeptic, then, might be inclined to ask, “Why develop such an algorithm?” The
short answer to this question can be found two rows up the table. When development of the 2-D
free-surface and interface model began in earnest during the 1980’s, the skeptic, justifiably, could
have asked the same question. Yet today, many years later, that technology is being used routinely
to process data from large marine streamer 3-D surveys. This example teaches an important
lesson for everyone in the exploration geophysics business: If a method is discovered that solves an
important problem, eventually computational technology and data acquisition practices will evolve
to a point that makes that method practical. This is the nature of progress in the science of seismic
exploration.

An interesting, and perhaps counterintuitive, aspect of recent advances in multiple attenuation is
that the complexity of the required ancillary subsurface information and, more broadly, the neces-
sary assumptions about the earth’s subsurface do not increase as the attenuation algorithms reach
their ultimate sophistication. Instead, these new algorithms shift the responsibility for providing
detailed subsurface information upwards to the data acquisition at the surface. That shift has an
important practical implication – success at removing multiples is no longer limited by uncertainty
in subsurface assumptions and information, but instead by the effort one is willing to expend on
data acquisition and processing. Prior to these new developments, success in removing multiples
was not necessarily commensurate with money spent. With the new technology, however, an Ex-
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ploration and Production company interested in paying more to achieve better multiple attenuation
has that option.

Table 1 could have had many more columns and rows. For example, we could have listed the
advantages and disadvantages of each method, their success or failure at attenuating different types
of multiples, the years during which the methods were first proposed and then widely practiced,
and so on. However, doing that would have spoiled some of the fun readers of this volume will have
discovering or rediscovering the history of multiple attenuation.

Multiple attenuation

method

Subsurface complex-

ity and reality that

method can accomo-

date

Requirement for an-

cillary subsurface in-

formation and inter-

pretive intervention

Requirement for the

description of seis-

mic experiment (e.g.,

source signature)

Requirements on

data acquisition,

reconstruction,

regularization and

computation

Deconvolution based

on periodicity of mul-

tiples

* * * *

Moveout discrimina-

tion methods

** ** * **

Free-surface and in-

terface model, 2-D

and pseudo 3-D

*** * *** ***

Free-surface and

point scatterer

model, 2-D and

pseudo 3D

**** *** ****

Free-surface and

interface and free-

surface and point

scatterer models,

true 3-D

***** *** ******

Table 1: Major stages in the evolution of multiple attenuation.
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Figure 1: Traditional definition of primary and multiple events. The blue-green area represents the water layer. The

red and yellow dots indicate the positions of seismic sources and receivers, respectively. The white lines are raypaths

of the events being defined. For the sake of simplicity in the figure, the rays do not refract as they cross reflecting

horizons.

a) A primary event has one upward reflection.

b) A multiple event has at least two upward reflections. This example is a 1st-order free-surface multiple because it

has a single downward reflection generated by the water surface.

c) A 2nd-order surface multiple.

d) This event is a 1st-order internal multiple because the generating horizon that produces the downward reflection is

located in the subsurface.

e) A 2nd-order internal multiple.

f) Hybrid event 1-3 is classified as a free-surface multiple. Even though one generating horizon is below the surface,

an algorithm that attacks free-surface multiples will attenuate this event. However, event 1-2, an internal multiple,

will remain in the data set after surface multiple attenuation.
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Figure 2: Definition of direct arrivals and ghosts. The blue-green area represents the water layer. The red and yellow

dots indicate the positions of seismic sources and receivers, respectively. The white and green lines are raypaths of the

events being defined. For the sake of simplicity in the figure, the rays do not refract as they cross reflecting horizons.

a) A direct arrival (white) and its ghost (green).

b) A source ghost.

c) A receiver ghost.

d) A primary reflection with both a source ghost and a receiver ghost.

e) 1st-order surface multiple reflection with both ghosts.

f) 2nd-order multiple reflection with both ghosts. Usually, removal of direct arrival and ghost events during seismic

data processing is a separate issue from attenuating multiples.
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Figure 3: A more general definition of a multiple is: a recorded event that can be decomposed into a number of other

recorded events. The dashed green lines in e) and f) represent events whose travel times are subtracted to obtain the

multiple’s travel time (see below).

a)This event is classified as a primary because it cannot be decomposed into other events.

b) In the traditional classification this event is a primary because it has only one upward reflection. The more general

definition classifies it as a multiple since it can be divided into two other recorded events, event 1-2 and event 2-3.

c) This event is a primary reflection. It cannot be decomposed into other recorded events.

d) This event is a multiple because it can be divided into two other recorded events: the primary reflections 1-2 and

2-3. The travel time of the multiple is the sum of the travel times of the two primaries.

e) An internal multiple composed of events 1-3, 2-3, and 2-4. The multiple’s travel time is the sum of the travel times

of events 1-3 and 2-4, minus the travel time of event 2-3.

f) Another multiple. The sum of travel times 1-3, 2-4, and 4-5, minus travel time 2-3 gives the multiple’s travel time.
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Chapter 1

Historical papers: characteristics of multiples

From today’s perspective the January 1948 issue of Geophysics makes for fascinating reading. The
topic of that issue was multiple reflections – not so much about how to attenuate them, but rather
about whether they even existed in seismograms recorded on land. Consider, for example, the very
first sentence in the first paper of this volume: “On several occasions . . . various geophysicists have
expressed . . . doubt regarding the existence of multiple reflections . . . ” (Dix, 1948). Dix went on
to argue in favor of the existence of multiples, but in the end he conceded “The evidence . . . does
not yet make their existence ‘strictly certain’ . . . ” Hansen (1948), however, had no doubts about
the existence of multiples. He reports identifying them by their low average velocities in reflection
velocity profiles from Argentina. Interestingly, the translator of Hansen’s paper from its original
Spanish had to remove the paper’s “slightly defensive tone,” which he attributed to the fact that
“. . . when Mr. Hansen’s paper was originally published . . . few geophysicists and fewer executives
reacted favorably to the idea that multiple reflections could be of any practical importance in
seismograph exploration . . . ”

Many of the papers in the January 1948 issue of Geophysics were presented orally two years
earlier at a symposium during the SEG’s 1946 meeting in Los Angeles. The lead paper of that
symposium (Ellsworth, 1948) presents solid evidence of multiple reflections in seismic records from
Sacramento Valley, California. Ellsworth also describes several kinds of multiples, naming them
Type 1, Type 2, and Type 3. Today geophysicists call those types surface multiples, peg-leg
multiples, and near-surface multiples. Johnson (1948) presents indisputable evidence from Butte
County, California of multiple reflections between a basalt layer and the bottom of the weathering
zone. Even those geophysicists of the 1948 era who believed that multiples were present apparently
were not too concerned. For example, Ellsworth concluded his paper with the statement “. . . the
multiple-reflection question as a whole does not seem to present a serious limitation to seismograph
interpretation except in isolated cases.” One exception to that widely held viewpoint was Johnson’s,
who perhaps had a glimmer of the future when he wrote in his paper’s conclusion “Thus a highly
suspicious attitude toward every reflection in areas known to return some multiple reflections seems
to be justified.”

In marine seismograms geophysicists often observed a mysterious phenomenon dubbed “sing-ing”.
As reported by Burg et al. (1951) and later by Werth et al. (1959) and Levin (1962), singing
marine seismograms were dominated by sinusoidal, nearly constant frequency energy. Singing was
clearly a localized phenomenon, often appearing and then disappearing several times along the
length of a single seismic line. Burg et al. analyzed some examples of singing and explained them
theoretically by considering the water layer as a seismic wave guide within which normal modes of
propagation were produced by constructive interference. Werth et al. describe the recording and
analysis of an experiment designed to reveal the cause of singing. They concluded that, at least in
their test area, singing was caused by short-period multiple reverberations in the water layer rather
than by a wave guide-like excitation of the water layer by the seismic source. Levin’s paper describes
an experiment to understand the seismic properties of Lake Maracaibo, which even today has a
reputation for producing seismic records that are difficult to process and interpret. Levin found
that singing was associated with areas having a high water-bottom reflection coefficient caused by
low velocity in gas-saturated bottom mud, a situation certainly conducive to multiple generation.
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The papers in this chapter provide a history of significant pioneering and discovery. By their
example, they serve to guide and encourage those striving for new scientific understanding.

Chapter 1 Papers
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Chapter 2

Multiple attenuation based on a convolutional model

Multiple reflections have many properties that can distinguish them from primaries. The papers
in this chapter discuss algorithms that, in essence, attenuate multiples by exploiting one of those
properties, their periodicity. Multiply reflected energy is truly periodic only in a 1-D medium.
Nevertheless, short-period multiples, such as those that occur in many shallow-water layer areas,
are nearly periodic, making simple inverse filtering or deconvolution viable methods of eliminating
such multiples. For example, in his classic paper about water reverberations Backus (1959) treats
the effect of the water layer as an approximate linear filter, and subsequently removes the water-
layer reverberations by convolving seismic traces with the inverse of that filter. Goupillaud (1961)
presents a non-linear generalization of the inverse filter concept, which ideally removes the effect
of reverberations in a shallow layer for either land or marine seismic data.

Watson (1965) proposes a simple 1-D scheme that models first-order surface multiples as the
convolution of a reflectivity sequence with itself (with an adjustment for the surface reflection coef-
ficient). This leads to an inverse equation for a multiple-free primary trace. Watson approximately
solved that equation with a feedback loop procedure. Anstey and Newman (1966) discuss the auto-
correlogram, which measures the periodicity of seismic traces, and the retro-correlogram (Watson’s
method under another name), which predicts multiples. They use the auto-correlogram to deter-
mine the presence of multiples and suggest, like Watson, the use of a feedback mechanism with the
retro-correlogram to attenuate multiples. Many of the papers in Chapter 4 (e.g., Berkhout and Ver-
schuur, 1997 ) discuss a multiple prediction method that is essentially a 2-D generalization of the
idea in the Watson and Anstey and Newman papers. The differences are interesting. In Watson’s
equation (9), for example, the wavelet term c1 (t) “approximates the additional filtering provided
the multiples by their relatively longer paths in the more highly attenuating near-surface forma-
tions.” In a 2-D prediction, such a term is not required because the prediction operator accounts
for such effects automatically. Anstey and Newman recognized that their 1-D retro-correlogram
did not produce accurate results for large offsets or dipping events. A 2-D prediction, on the other
hand, does incorporate the effects of offset and dip. The paper by Kunetz and Fourmann (1968)
offers two efficient schemes for computing 1-D-based multiple deconvolution operators.

The digital least-squares inverse filtering method known as predictive deconvolution is a widely
used tool for attenuating periodic events in seismic traces. Peacock and Treitel (1969) explain
the basic theory of predictive deconvolution and then discuss some practical issues. They also
emphasize the key feature of predictive deconvolution: the ability to specify the prediction distance
allows selective attenuation of repetitive waveforms that have some particular period. This makes
the method ideal for eliminating periodic multiples from seismic traces.

The final three papers in this chapter extend the deconvolution approach to multiple attenuation
to situations where the multiple reflections are not periodic. Taner et al. (1995) accomplish this
by multichannel predictive deconvolution performed in the x-t domain. This paper is notable for
its thorough introduction to the concept of multichannel deconvolution and how that approach is
related to other multiple attenuation methods. Lamont and Uren (1997) introduce a “multiple
moveout” procedure that makes multiples periodic, and follow that by “isostretch radial trace” to
stabilize the wavelet in time. Together, the two transformations pre-condition multiple events to
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make them suitable for a simple 1-D deconvolution. Parrish (1998) describes regularizing water-
layer multiples spatially and temporarily by migrating the data using the water velocity. This
makes single trace dereverberation more effective. After multiple attenuation residual migration
relocates the remaining primary reflections to their final positions.

Overall, the papers in this chapter show that the convolutional model has provided tremendous
practical value. Simultaneously, it planted the seeds that grew into multi-dimensional wave theo-
retic methods for dealing with multiple reflections (see, for example, Riley and Claerbout (1976) in
Chapter 4).

Chapter 2 Papers
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Chapter 3

Multiple attenuation based on event characteristics

Aside from periodicity or near periodicity (see Chapter 2), multiple reflections can differ from
primary reflections in other ways that can be exploited to attenuate them. Chief among these is
differential moveout. For some seismic data sets simple CMP stacking is effective at reducing the
amplitudes of multiples. In the words of Harry Mayne, inventor of the CMP method, “reflections
which follow the assumed travel paths are greatly enhanced, and other events are reduced” (Mayne,
1962 ). When stacking alone is insufficient, better separation of primary and multiple events can
be achieved by weighted stacking. Schneider et al. (1965) demonstrate a method of weighted
stacking where the weights are determined by prestack application of optimal filters designed by
a multichannel least-squares method. Schoenberger (1996) presents an excellent tutorial on the
subject of weighted stacking. Although weighted stacking can be quite effective, as Schoenberger
demonstrates, it does have a major disadvantage: only stacked traces are output. That limitation
can be overcome by 2-D velocity filtering methods. For example, Ryu (1982) describes a filter
applied to NMO-corrected CMP gathers in the space-time domain that separates multiples from
primaries. The velocity function for the NMO lies between the velocity functions for primary events
and multiple events. This, in effect, maps the events into different quadrants of the f-k domain,
thereby making their separation possible by dip discrimination.

The next seven papers in this chapter describe multiple attenuation based on discrimination in a
Radon transform domain. Currently this is the seismic exploration industry’s most popular method
of attenuating multiples. In a landmark paper, Hampson (1986) reports on multiple discrimination
in the parabolic Radon transform domain. An NMO correction was applied to make the originally
hyperbolic events in CMP gathers nearly parabolic in the x-t domain, thereby mapping them
into approximately discrete points after the parabolic transform. Theoretically, then, multiple
discrimination is simple. Provided that a sufficient moveout difference existed originally between
the two classes of events, they should map into separate regions in the Radon domain. In practice,
unfortunately, things are not so simple. Usually the hoped for discrete points in the parabolic Radon
domain are smeared out into overlapping zones of energy, making primary-multiple discrimination
difficult. Since Hampson’s 1986 paper, many authors have described refinements to his algorithm.
Yilmaz (1989) improves on Hampson’s method by replacing the NMO correction prior to the
transform with a t2-stretching of the CMP data.

In spite of the advances by Yilmaz and Foster and Mosher, Radon transforms were still sometimes
a less than satisfactory way of discriminating between primary and multiple events. There were
two basic problems:

• The finite spatial sampling and limited aperture in field data records limited resolution in the
Radon domain (Thorson and Claerbout, 1985; Sacchi and Ulrych, 1995; Trad et al., 2003).
• In situations with complex geology the apexes of the hyperbolic events might not be at zero
offset (as is assumed by a standard Radon transform).

The solution to the first problem was a so-called “high resolution” Radon transform, in which
a priori statistical requirements were imposed that forced a sparse distribution of events in the
Radon domain. Early forms of this type of transform required an expensive, iteratively re-weighted
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solution to a least-squares problem (see the references cited above). Herrmann et al. (2000) present
a relatively inexpensive, non-iterative scheme to solve the problem. Their method is recursive;
that is, the weights at each frequency depend on the Radon transform solution found at earlier
frequencies. As an alternative, Moore and Kostov (2002) suggest a non-iterative, non-recursive
scheme that derived the weights from semblance computations along the offset axis. Hargreaves
et al. (2003) propose a solution to the second problem. Specifically, they address the attenuation
of so-called diffracted multiples that arise from scatterers near the ocean bottom. Normal two-
dimensional Radon transforms do a poor job of suppressing these multiples because their apexes
do not occur at zero offset. Hargreaves et al. show that by adding a third Radon transform
parameter, representing the apex location of hyperbolic events, superior separation of primaries
and diffracted multiples is possible. Trad (2003) shows that a Stolt-type migration operator can
be used to implement a very fast apex-shifted Radon transform that performs well in practice.

The design of the reject filter is a problem faced by all 2-D velocity filtering methods, regardless
of the domain in which they operate. Ideally, the amplitudes of the transformed multiples and
primaries would appear in well-localized and -separated regions so that the data processor could
distinguish between these regions. In practice, the amplitudes are often not well-localized and the
regions overlap, making selection of the reject filter difficult. Zhou and Greenhalgh (1996) solve this
problem by using the 2-D transform of wave-equation-based multiple predictions (see Chapter 4) to
design the optimal reject filters in the 2-D transform space. Zhou and Greenhalgh have published
a series of papers showing that this method can be applied in any 2-D transform domain. Their
paper included here discusses application to the parabolic Radon transform domain to attenuate
water-layer multiples. Landa et al. (1999) extend Zhou and Greenhalgh’s idea to attenuate both
surface and interbed multiples.

Multiple reflections can be removed from seismic data by exploiting characteristics other than
periodicity or moveout. For example, each multiple in a data set is kinematically and dynamically
related to the primary events from the reflecting horizons involved in generating the multiple (see
Chapter 4). The two papers by Doicin and Spitz (1991) and Manin and Spitz (1995) describe
a multichannel pattern recognition technique that can target and eliminate a particular multiple
based on its relationship with primary reflections. The 1991 and 1995 papers describe 2-D and 3-D
applications of this idea, respectively. The method requires knowledge of the generating mechanism
of a targeted multiple.

Various forms of stacking and 2-D velocity filtering generally have the most difficulty separating
primaries from multiples at near offsets, where the instantaneous apparent velocity differences
between the two kinds of events typically vanish. Houston (1998) proposes enhancing the event
discrimination at near offsets by applying a localized multichannel coherency filter to gathers NMO
corrected with the moveout appropriate for multiples. If multiples are flattened, then they become
laterally predictable, whereas overcorrected primary events are not. Houston’s coherency filter
appears to be more effective than f-k filtering in suppressing multiples without distorting primary
reflections. Hu and White (1998) describe separating multiples from primaries using another type
of coherency-based multichannel filtering called data-adaptive beamforming. This algorithm starts
with a beamforming filter based on an initial model of coherent noise (i.e., a multiple) in a data set
and then adaptively refines that model to optimize the ability of the beamforming filter to isolate
that event. Hu and White show a prestack data example in which the performance of their method
was superior to Radon transform-based multiple attenuation.
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Finally, Zhang and Ulrych (2003) describe a method of separating primaries and multiples based
on migration focusing. They first migrate the data prestack, using a velocity function appropriate
for multiples, to focus the multiples, but not the primaries. Next, they apply a standard statistical
measure, called the median of absolute deviations, along hyperbolic trajectories at the residual
velocity of the primaries to identify samples that are outliers. Because only the multiples are
focused, such outliers are almost certainly multiples. After replacing these samples with the median
and demigrating, the multiples are significantly attenuated.

The papers in this chapter illustrate that attenuation methods based on differences between pri-
maries and multiples are often an effective and appropriate choice within the toolbox of multiple
attenuation techniques.
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Chapter 4

Multi-dimensional wavefield methods: Part I

In the volume introduction, we explained that every multiple event in a seismic data set, no matter
how complicated, is a composite of two or more simpler events (hereafter called “subevents”)
that have their termination points at the free surface. This relationship suggests the possibility
of manipulating a data set in a way that uses its subevents to predict its multiples. Indeed,
Chapter 2 included several papers that discussed 1-D prediction of multiples from primaries. This
chapter and the next include papers that carry this idea beyond 1-D to multi-dimensional wavefield
manipulation methods that predict the multiple events in a data set. If such a prediction is
sufficiently accurate, multiples can be eliminated simply by subtracting the predictions from the
original data. This concept theoretically allows satisfactory multiple attenuation in situations
where traditional methods, like those in Chapters 2 and 3, fail. In deep water, for example, simple
periodicity-based methods fail because the multiples are not periodic. Furthermore, in recent years
the search for petroleum targets has extended to geologic settings beneath complex heterogeneous
overburdens such as salt, basalt, karsted sediments and volcanics. The lateral rapid heterogeneity
and ill-defined boundaries in these settings are often too complex for any traditional methods of
multiple attenuation to accommodate.

Three major methodologies for multiple prediction via multi-dimensional wavefield manipulation
have evolved. The wavefield propagation method directly models multiples by propagating subevents
through one or more cycles of reverberation (e.g., Wiggins (1988)). This approach requires a
model of the medium, including velocities and reflection coefficients. Thus, it is useful mainly
for water layer multiples since the required model information (water velocity and the water-
bottom reflection coefficient) is relatively simple. For more complex reverberations, and especially
for those in complex geologic settings, direct modeling is not usually considered a viable option
because the required a-priori subsurface information is not known sufficiently well. Two alternative
approaches, however, provide a capability of predicting multiples that avoid this problem. The
feedback free-surface and interface model and the inverse-scattering series free-surface and point
scatterer model are two distinct approaches for predicting both free-surface and internal multiples
that reduce or eliminate the need for a-priori subsurface information. This is accomplished by using
the data themselves to construct operators that predict the multiples contained within the data
(e.g., Verschuur et al., (1992)). In particular, both methods can predict surface multiples without
any need for a subsurface model. The two methods require knowledge of the acquisition wavelet
in order to produce accurate multiple predictions. This chapter includes papers on the wavefield
propagation and feedback methods; the inverse series procedures are found in Chapter 5. Because
the basic concepts of these latter two methods are not widely known, we introduce them in a brief
tutorial immediately following this chapter introduction.

In the first of the wavefield propagation papers, Bernth and Sonneland (1983) predict multiples
by applying a water layer extrapolation operator in the frequency-wavenumber domain to prestack
data. The predicted multiples are adaptively subtracted from the original data to accommodate
timing and amplitude errors in the prediction. Morley and Claerbout (1983) use a ”Split-Backus”
model to predict water layer peg-leg multiples. The modeling assumes near-vertical travel in the
water layer, but can handle situations where the source and receiver depths are unequal and the
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water depth and water-bottom reflection coefficient vary along a line. The multiple modeling pro-
cedure suggested by Berryhill and Kim (1986) removes two important limitations present in the
previous two papers. First, unlike the Bernth and Sonneland algorithm, the method can accom-
modate any sea-floor profile. Second, unlike the Morley and Claerbout procedure, the prediction is
not limited to multiples that propagate nearly vertically in the water layer. The water-bottom re-
flection coefficient does not appear explicitly in Berryhill and Kim’s multiple prediction procedure;
instead, its effects are accounted for in an adaptive subtraction of the predicted multiples from the
original data.

Wiggins (1988) derives a method of attenuating water-bottom multiples that allows for a locally
varying water-bottom reflection coefficient. The wavefield propagation through the water layer is
split into two pieces: a forward-in-time propagation from the surface to the water bottom and
a backward-in-time propagation from the surface to the water bottom. The two wavefields at
the water bottom then should be identical, trace-by-trace, except for the effects of the water-
bottom and water-surface reflectivity. Minimizing the observed difference allows derivation of a
filter representing the effects of the water-bottom reflectivity. That filter is then used to calculate
the multiple-free wavefield. Lokshtanov (2000) describes a wave propagation method that is applied
to CMP gathers in the τ -p domain. One advantage of this is that the method easily handles angular
dependence of the water-bottom reflection coefficient. Finally, Hill et al. (2002) suggest predicting
multiples using beam methods to extrapolate the wavefield. A predictive matched filtering to
identify and remove multiples from the original data is applied to beam components. Using certain
assumptions about the earth model, Hill et al. produce a form of their method that can be used
with conventionally recorded 3-D marine data.

As explained in the Chapter 4 Tutorial, the feedback free-surface and interface model is a scheme for
the forward modeling of seismic reflection data. When carried out in the seismic data processing,
or inverse sense, it provides the opportunity to predict and attenuate multiples that are associated
with the reflectors. Early versions of this concept can be found in the landmark works of Riley
and Claerbout (1976), and Kennett (1979). Riley and Claerbout begin by using Z-transforms to
derive an algorithm that removes surface multiples for a 1-D earth model by, in essence, convolving
the data with themselves. Their algorithm includes the inverse of the acquisition wavelet, and
they describe how, in some cases, that wavelet can be found using a least-squares minimization
of the difference between the seafloor primary convolved with itself and the first-order multiple
water-bottom multiple. The paper then addresses 2-D multiple reflections. The authors derive
an approximate finite difference-based solution that is analogous to their 1-D solution. The paper
concludes with a lengthy discussion of the practical problems expected when the method is applied
to less-than-ideal field data sets. Kennett describes construction of a surface multiple suppression
operator in the frequency-wavenumber domain for plane-layered elastic and acoustic media. The
fundamental concept is the same as in the Riley and Claerbout paper, but Kennet’s method is not
restricted to wavefields that travel nearly vertically. Kennett also describes generalization of the
method to land data. As is characteristic of the feedback free-surface methods, detailed knowledge
of the acquisition wavelet is necessary.

In the early 1980’s, Berkhout published a comprehensive treatment of the free-surface and interface
model using a feedback formalism (Berkhout, 1982 ). In particular, Berkhout described an elegant,
fully multi-dimensional ω-x formulation that could be described and implemented by simple matrix
manipulations. Furthermore, the method placed no restrictions on the nature of the subsurface.
This work launched a long-term effort, centered at Delft University, that addressed conceptual
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and practical issues and eventually brought this method – which is now known as “surface-related
multiple elimination” (SRME) – to widespread industry usage. From among the numerous contri-
butions from the Delft group, this chapter includes: Verschuur et al. (1992), Verschuur and Kabir
(1992), Berkhout and Verschuur (1997), and Verschuur and Berkhout (1997). Verschuur et al.
present the derivation of an ω-x matrix equation for eliminating free-surface multiples. The equa-
tion requires no information about the subsurface, but it does require knowledge of the acquisition
wavelet. Since that wavelet is typically not well known, the authors propose an adaptive procedure
that estimates the wavelet by minimizing the energy in the data after multiples are removed. The
matrix equation includes the inverse of a large matrix, which is computationally expensive and
may have stability issues. To overcome these problems, Verschuur et al. do a series expansion
of the matrix inverse and keep only a few lower-order terms. The authors also mention briefly a
recursive scheme for attenuating internal multiples as well (see below). Verschuur and Kabir make
a comparison between surface-related multiple elimination and Radon transform multiple elimina-
tion. They conclude that the two methods complement each other. This paper also includes a
simplified version of the SRME theory, which makes it a good starting point for readers new to
the concept. The Berkhout and Verschuur and Verschuur and Berkhout papers are companions:
the first is concerned with theory, and the second with practical issues and examples. In these two
papers, the authors explain and illustrate an iterative version of the SRME method.

A reciprocity formulation of this free-surface and interface model for multiple removal also had its
historical roots and activity centered in Delft University, from the school of Professor A. deHoop.
For example, Fokkema and Van den Berg (1990) developed these concepts within a wave-theoretical
integral equation framework, thereby providing mathematical clarity and physical insight. This ap-
proach furthered the understanding of the relationship between the feedback and inverse-scattering
methods (see Chapter 5) for free-surface multiple attenuation, and the role, for example, that
the obliquity factor (Born and Wolf, 1964 ) plays in those theories. The wave theoretical angle-
dependent obliquity factor is important, particularly for long offsets and shallow targets, as illus-
trated by three figures from an EAGE Convention paper by Dragoset (1993). The figures, which do
not appear in the original published abstract, are included at the end of this chapter introduction.

In addition to those from the Delft group, this chapter includes a few other notable papers on the
feedback free-surface and interface model. In the early 1980’s Pann filed for a US Patent, Pann
(1989), for a multi-dimensional method of predicting and removing surface multiples that is based
on Huygens’ principle. Numerically, the steps in Pann’s method for predicting multiples of a certain
order for a specific trace are the same as those in the Delft scheme. Pann, however, did not reveal
any method for easily selecting which combinations of traces need to be convolved. The matrix
formulation of the Delft method accomplishes that task automatically. Dragoset and Jericevic
(1998) derive the equations for SRME in an intuitive fashion by making an analogy between
surface multiple prediction and the diffraction aperture problem of classical optics. The Kirchhoff
integral solves both problems, and the authors show how the integration can be accomplished by
matrix manipulations. They also present and discuss a list of survey design suggestions intended
to provide data that are most suitable for the SRME process. Finally, Al-Bannagi and Verschuur
(2003) propose a method of applying SRME to post-stack data. For a given post-stack trace, the
data are demigrated to produce sufficient pre-stack traces for predicting the multiples in the (zero
offset) post-stack trace. This approach has several advantages when applying SRME to land data:

• The multiple prediction is performed with traces that have good signal-to-noise ratio compared
to that of pre-stack land traces.
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• Problems with irregular and sparse spatial sampling of the surface wavefield are avoided.
• Detailed structural variations in the subsurface are accommodated.
• The method is computationally efficient.

As several of the papers in this chapter discuss, the feedback free-surface and interface model
method can be applied to the prediction and attenuation of internal multiples. Starting with the
free surface and proceeding to the next shallowest reflector, the water bottom, one sequentially
predicts and removes first all multiples having downward reflections at the free surface and then
all multiples having their shallowest downward reflection at the water bottom. Continuing in this
manner, all free-surface and internal multiples are attenuated - one interface at a time. Carrying
out this strategy requires accurate depth migration to each interface and good estimation of the
reflectivity properties at that imaged reflector. However, extension of the composite event concept
to internal multiples allows certain important characteristics of those multiples to be predicted in
a simpler fashion. In particular, all internal multiples from a given interface can have their travel
times predicted precisely without any knowledge of the subsurface except for the location in time
of that reflector. Amplitudes, however, are predicted only approximately with an accuracy that
depends on the type of internal multiple. For further discussion of various issues involving internal
multiple prediction see the tutorial following this introduction as well as Coates and Weglein (1996)
and Weglein and Matson (1998) in Chapter 5. Here, we include one paper, Jakubowicz (1998),
that describes the prediction of internal multiples based on the composite event concept and the
free-surface and interface model.

The Delft University feedback formulation for multiple prediction has met with much success,
and, in fact, has become an industry-wide standard method of removing multiples. Other related
formulations have also led to viable wave equation-based methods of predicting and attenuating
multiples. This chapter concludes with one such effort: Liu et al. (2000). These authors derive
multiple attenuation formulas using the invariant embedding approach. The results resemble those
that appear in the Delft papers. However, the method is implemented in the τ -p domain. For
media with only gentle dips, the resulting algorithm is quite efficient because the matrices involved
in the multiple prediction are sparse.
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Figure 4: Figure A: Synthetic marine shot record for testing SRME algorithms. The model has three flat reflecting

horizons in a constant velocity medium. The zero-offset arrival times for the three primary events are about 0.5, 0.7,

and 1.2 s. The reflection coefficients were chosen such that the third primary event (at the arrow) is exactly cancelled

by one of the surface-related multiples. The strong event at 1.0 s and all of the events below 1.2 s are surface-related

multiples. Figure B. Surface-related multiples eliminated – no obliquity factor. This result was obtained by directly

inverting the matrix at each frequency that represents the SRME operator. That operator is derived from the Kirchhoff

integral (Dragoset and Jericevic, 1998). Here, the obliquity factor part of the Kirchhoff integral was ignored by setting

it equal to one for all wavefront angles of incidence at the surface. Figure C. Surface-related multiples eliminated –

proper obliquity factor applied. Compare this result to that in Figure B. Using the proper obliquity factor improves

multiple elimination at the large offsets. This is to be expected, because the raypaths are most oblique to the surface

at large offsets.
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Chapter 5

Multi-dimensional wavefield methods: Part II

The free-surface and point scatterer model for the generation of seismic reflection data provides a
free-surface model for free-surface multiple generation and a point scatterer model for generating
primaries and internal multiples. When this model operates in an inverse sense, the free-surface
model removes ghosts and free-surface multiples while the point-scatterer model allows for pro-
cessing primaries to produce structure maps, earth property estimates, and the removal of internal
multiples. The history of this approach derives from a form of perturbation theory called scattering
theory and describes how altering (or perturbing) a medium will result in an altered or perturbed
wave-field. The tremendous flexibility in scattering theory allows using either a surface, interface
or point scatterer model to characterize the difference between a reference medium (typically a
nominal velocity model) and a perturbed medium (the actual earth) depending on one’s ability to
provide or define that difference in an inverse or processing sense. For example, since the air-water
boundary is fairly well defined, a free-surface description for that perturbation is chosen and that
model is then used to generate and remove free-surface multiples. Since typical subsurface detail
is much less well defined, a point scatterer description of the perturbation is chosen for generating
and processing primaries and internal multiples.

The origin of the inverse scattering series is found in atomic and nuclear scattering (Moses, 1956 )
and was extended to acoustics, (Prosser (1969), Razavy (1975)), and then to seismic exploration by
Weglein, Boyse and Anderson (1981). Convergence problems and other practical issues precluded
the series, in that pristine form, from providing any practical value. To extract some practical use-
fulness from this most general and flexible formalism, Weglein, Carvalho, Araujo, and Stolt sought
to separate the series into task-specific subseries resulting in distinct algorithms for attenuating
free-surface and internal multiples, and to investigate their convergence and practical requirements.
Carvalho et al. (1991, 1992) develop the free-surface inverse-scattering subseries and then apply
it successfully to synthetic data (1991) and to field data (1992). Araujo et al. (1994) first identify
the subseries that attenuates internal multiples, and then demonstrate it with tests that include
free-surface and internal multiples. Weglein et al. (1997) present the first comprehensive theory
for attenuating all multiples from a multi-dimensional heterogeneous earth with absolutely no in-
formation about the subsurface. The excellent convergence properties of these subseries and their
ability to accommodate field data were in marked contrast to properties of the overall series.

Coates and Weglein (1996) examine and test the efficacy of prediction of the amplitude and phase
of internal multiples for acoustic and elastic media. The phase of all internal multiples is correctly
predicted, including that of converted-wave multiples, and the predicted amplitude well attenuates
internal multiples of an entire p-wave history. Weglein and Matson (1998) use an analytic example
to understand the precise nature of the amplitude predicted in the internal multiple algorithm and
provide a sub-event interpretation for the time of the predicted internal multiple phase. Matson
(1996) provides a map between the forward construction of seismic events in the scattering series
and the primaries and multiples in seismic data.

A series describes primaries and internal multiples in terms of reference propagation and repeated
point scatterer interactions where the scattering from any point depends on the difference between
actual and reference medium properties at that point. The inverse processes on primaries and
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multiples require only reference propagation and reflection data. The individual terms in the in-
verse series that remove internal multiples attenuate all internal multiples of a given order from all
interfaces at once – without interpretive intervention or event picking of any kind – and automat-
ically accommodate multiples due to specular, corrugated or diffractive origin. The leading term
in the removal series predicts the time of internal multiples precisely; higher-order terms increase
the accuracy of the amplitudes of the predicted multiples. As more terms are used, the internal
multiple attenuation moves closer to multiple elimination. Although the feedback-interface method
(see Chapter 4) is computationally efficient when the reflector causing the downward reflection
can be isolated, the ability to automatically attenuate internal multiples under complex geologic
conditions without requiring any subsurface information, isolation of reflectors, or interpretive in-
tervention, remains the unique strength of the inverse scattering method of attenuating internal
multiples.
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Chapter 6

Multiple prediction for field data sets

Both the multiple prediction method developed at Delft University and by others (Chapter 4) and
the method based on scattering theory (Chapter 5) are complete and realistic algorithms from a
multidimensional physics point of view. Theoretically, such completeness and realism allow ac-
curate multiple prediction without requiring detailed a priori subsurface information. However,
while these methods can accommodate complex wave propagation effects without knowledge of
the subsurface, they do place stringent requirements on the definition and completeness of the
seismic measurements at the surface. Typically, those requirements are not fully met by present
day routine data acquisition practices. This chapter contains papers that describe efforts to over-
come the problems that occur when multiples are predicted using less than ideal surface wavefield
measurements.

There are two types of stringent requirements. (The Chapter 4 tutorial and Dragoset and Jericevic
(1998), also in Chapter 4, discuss the reasons for these requirements.) First, the acquisition wavelet
must be either measured or estimated accurately for each shot in the recorded data set. The
acquisition wavelet consists of the source signature, the source and receiver array radiation patterns
including surface ghost effects, and the recording system filters. Note that the acquisition wavelet
is angle dependent and that it does not include any earth filtering effects. Second, the wavefield
measured at the surface must be fully sampled and non-aliased. Fully sampled means the following:
Suppose a particular recorded trace is defined by its shot and receiver locations at the surface. To
predict surface multiples for that trace requires that its shot also be recorded by a 2-D spread of
receivers that spans all possible surface locations at which the various multiples in the trace may
have their downward reflections. Furthermore, the trace’s receiver must record data from a 2-D
spread of shots that spans the same surface locations. The size of the aforementioned 2-D spreads
- that is, the surface recording aperture - depends on the subsurface structure. For example, if the
structure is predominantly 2-D and seismic lines are shot parallel to the dip direction, then 1-D
spreads and 2-D multiple prediction suffice. If, however, the subsurface contains 3-D structures -
such as ocean-bottom diffractors, reflecting horizons with crossline dip, and salt structures - then
2-D spreads and 3-D multiple prediction are required. Generally, the size of the required crossline
aperture is a function of crossline dip.

The requirement for an accurate acquisition wavelet was an important obstacle to the early accep-
tance and application of wave equation-based multiple prediction technology. An early response
to that challenge sought to exploit the wavelet requirement by using the multiple attenuation al-
gorithm itself to find the required wavelet. The basic assumption was that seismic data without
multiples had fewer events and hence less energy. Therefore, the desired wavelet could be found by
searching for the wavelet that produced an energy minimum when multiples predicted using that
wavelet were subtracted from the original data. Various incarnations of this concept were intro-
duced. Verschuur et al. (1992) (see Chapter 4) propose a preprocessing deconvolution to remove
the angle-dependent components of the acquisition wavelet from the data and follow that with
a frequency-dependent energy-minimizing search to determine the residual wavelet amplitude and
phase. Carvalho and Weglein (1994) describe a global and robust searching of the minimum-energy
objective function surface designed to avoid local minima. Ikelle et al. (1997) truncate the scatter-
ing series formulation of multiple prediction after two terms, which results in a linear relationship
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between the acquisition wavelet and the free-surface reflections. Ignoring truncation errors, the
resulting energy-minimization problem for the wavelet has an analytic solution (that can be refined
through an iterative scheme to account for truncation effects). Dragoset and Jericevic (1998) (see
Chapter 4) formulate the surface multiple attenuation algorithm using a closed-form expression
of the multiple prediction series. Unfortunately, that formulation results in the expression for the
acquisition wavelet being inside of a rather large matrix that must be inverted, making an iterative
wavelet search quite expensive. They show, however, that by applying eigenvalue decomposition
to the matrix the acquisition wavelet factor can be isolated in a diagonal matrix, which, of course,
is inverted easily and cheaply.

All of these methods for estimating the acquisition wavelet work at cross-purposes to the underlying
physics of the multiple attenuation methods they are meant to serve. For example, destructively
interfering events cause no problem for the physics of the algorithms but can cause problems with
minimum-energy wavelet estimation approaches. There are other approaches to finding the acquisi-
tion wavelet, such as near-field source measurements (Ziolkowski et al., 1982 ), that are independent
of the multiple attenuation process. Ziolkowski, et al. (1999) propose a wave-theoretical multiple
attenuation algorithm that uses near-field source measurements to avoid three problems common
to most methods of Chapters 4 and 5. They are: 1) the assumption that the source is a point,
2) the presence of the incident source field in the recorded data, and 3) the need to estimate the
wavelet using a minimum-energy criterion. (Note: being a wavefield method, the Ziolkowski, et
al., 1999 paper could have been included in Chapter 4. However, its emphasis on dealing with
problems in field data sets makes it at home in this chapter as well.) A variant of Green’s theorem
known as the extinction theorem provides another possibility for satisfying the need to know the
acquisition wavelet (Weglein et al., 2000 ).

Prior to the year 2002, the attenuation methods of Chapters 4 and 5 were typically implemented as
2-D algorithms, and applied to data that were, at best, quasi 3-D. In the presence of 3-D subsurface
structures, the resulting timing errors in predicted multiples can be quite large; see, for example,
Ross et al. (1999). Furthermore, such timing errors are complicated; they depend on crossline
dip, offset, and the order of the multiples. The obvious solution to this problem was to apply 3-D
prediction algorithms to 3-D data, but costs generally prohibited this. Therefore, a more pragmatic
solution was sought for and developed: sophisticated adaptive subtraction. The general idea behind
this approach is that because of imperfections in field data sets and use of prediction algorithms
that ignore 3-D complications, effective multiple attenuation can seldom be accomplished in just
one step. Instead, a two-step method is necessary: (1) the multiples are imperfectly predicted
followed by (2) adaptive subtraction that compensates for the imperfections, thereby producing
reasonably good attenuation in spite of them. Note that adaptive subtraction compensates for
prediction errors that arise due to imperfect knowledge of the acquisition wavelet as well as the
errors due to use of 2-D rather than 3-D multiple prediction.

Adaptive subtraction can be applied to different data domains (e.g., common shot, common offset,
etc.) using many different algorithms, all of which have parameter settings that can affect the
results. This flexibility is a mixed blessing: it allows for good results in a wide variety of situations,
but the data processing practitioner can face an overwhelming smorgasbord of choices. Using
synthetic data, Abma et al. (2002) compare the performance of least-squares 1-D matching filters,
pattern-matching (Spitz, 1999 ), and shaped 2-D filters. They conclude that, of those three choices,
1-D matching filters (computed from and applied to a 2-D window of data) are the safest to use for
adaptive subtraction. The other two methods, while theoretically more accommodating of errors
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in the predicted multiples, tend to attenuate primary reflections along with the multiples. van
Borselen et al. (2003) present a target-oriented adaptive subtraction approach. Their method uses
the same 1-D matching algorithm as studied by Abma et al., but it is applied to subtract only
multiples having some particular characteristic, such as a predominant dip or frequency range.
Presumably, such a constraint minimizes the chance that the adaptive subtraction process will
affect primary reflections. Guo (2003) describes a more advanced pattern-matching algorithm than
that studied by Abma et al. It iteratively calculates the prediction error filter for the primaries
and uses a projection signal filter to reduce the effects of random noise. Guo’s results on the simple
synthetic data sets analyzed by Abma et al. look superior to results of other methods applied to
those data sets. In a somewhat different approach, Ross et al. (1999) suggest applying time-variant
deterministic time corrections to the predicted multiples prior to the adaptive subtraction. The
time corrections are derived from a 3-D model of the subsurface.

The need to accommodate errors in multiples produced by applying 2-D prediction to data from
a 3-D subsurface was one main impetus behind the development of adaptive subtraction as part
of the multiple attenuation process. Although the method of 2-D prediction followed by adaptive
subtraction has had many successes, its limitations are also evident. Consider, for example, the
offshore Norway data set results displayed by Hadidi et al. (2002). A simple CMP stack (Figure
4) shows a semi-coherent noisy region that is produced by diffracted surface multiples. A 2.5-D
application of surface multiple attenuation (see the paper for an explanation of 2.5-D) produced
good results when the source-to-receiver crossline separation was small and noticeably poorer results
when the source-to-receiver crossline separation was large (Figures 6 and 13, respectively). In
neither case was the incoherent noise caused by the diffracted multiples completely attenuated.
This result is not a surprise since diffracted multiples are an inherently 3-D phenomenon. The
inability to attenuate them fully is due to limitations of current data acquisition practices.

Although possible remedies to the limitations of current data acquisition practices were envisioned
at about the same time as when adaptive subtraction became widely used, practical applications
of those ideas have appeared in the literature only recently. Two types of remedies are possible.
Although full 3-D marine acquisition with towed streamers may never be practical, there are novel
acquisition schemes that offer benefits. Alternatively, data acquired with standard survey designs
may be extrapolated and interpolated in various ways and at various processing stages to simulate
full 3-D data acquisition. Keggin et al. (2003) present a simple, but expensive, acquisition rem-
edy for the problems created by 3-D diffracted multiples. Using an 8-cable streamer ship and a
separate shooting ship, a single target swath was acquired nine times with different source-receiver
configurations. Stacking the resulting multi-azimuth data sets produced a significant reduction in
the noise due to diffracted multiples.

If a 3-D surface multiple prediction algorithm is applied to standard 3-D marine streamer data
the sparse crossline sampling of the surface wavefield causes the predicted multiples to be a poor
representation of the actual multiples. The next two papers, van Dedem and Verschuur (2001) and
Hokstad and Sollie (2003), attack this problem using sparse inversion (based on assumptions of
hyperbolic and parabolic shaped events, respectively) applied to the crossline multiple contribution
gathers. (These gathers consist of the collection of traces that are summed to produce a trace
containing predicted multiples.) Specifically, the inversion produces a parametric representation of
the information in a sparsely populated crossline multiple contribution gather from which accurate
predicted multiples are calculated as if the gather were fully populated. Nekut (1998) offers a
different solution to the sparse crossline sampling problem of streamer acquisition. He proposes
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using least-squares migration-demigration as an interpolation and extrapolation process to create
a fully populated 3-D data set from standard 3-D field measurements. Although computationally
expensive, small-scale synthetic data set tests suggest that the method has promise. The final
paper in this chapter, Kleemeyer et al. (2003), is the first exploration industry publication to
describe actual application of 3-D surface multiple attenuation to an entire 3-D marine streamer
survey. Multiple prediction was accomplished by Shell’s MAGIC3D algorithm (Biersteker, 2001 ),
which includes a massive data regularization, extrapolation, and interpolation effort. Interestingly,
in Kleemeyer et al. the predicted multiples are subtracted from the data after both were prestack
depth migrated. The results show superior attenuation of diffracted multiples compared to earlier
processing efforts.

As this reprint volume goes to press, we think that the seismic industry is just at the beginning of
a major effort to develop practical, cost-effective ways of applying 3-D surface multiple prediction
to 3-D marine streamer surveys. Although the theory and underlying physical basis of the method
are well understood, many pragmatic compromises will likely be necessary and remain to be dis-
covered. While deterministic prediction of multiples brings greater effectiveness, such predictions
will never be perfect; hence, there will always be a role for statistical and adaptive procedures.
These issues also motivate the drive for more effective data collection, such as single sensor data,
and extrapolation and interpolation methods. The heightened demand on definition and complete-
ness will be increasingly satisfied in the coming years, leading to a new level of effectiveness for
the attenuation of free surface and internal multiples, and the subsequent imaging and inversion
methods for primaries.
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Chapter 7

Multiple attenuation for land, ocean bottom, and vertically-deployed marine
receiver data sets

Interestingly, most of the technical literature on multiple attenuation addresses the problem of
multiple reflections in marine streamer data. Perhaps, arguing that the relatively high reflection
coefficients of the water surface and the water bottom make multiples in marine data more of a
problem than those in land data, we should laud geophysicists for tackling the tougher problem.
On the other hand, one could counter that their very subtlety makes multiples in land data the
tougher problem of the two. Regardless of the outcome of such an argument, it is certainly true that
the non-uniformity and noise contamination of typical land data sets makes removing multiples a
difficult, expensive problem indeed. Furthermore, because the source of multiples in a land data
set is rarely obvious, data processors are often left with a nagging uncertainty: Were the events
affected by that process really multiples, or were they perhaps primary reflections?

Kelamis et al. (1990) describe a practical methodology for applying the Radon transform (Yilmaz
(1989), Chapter 3) to attenuate multiples in high-density land data sets. By using a pre-processing
step to reduce the multiplicity and regularize the geometry, they managed to obtain convincing
results at a modest cost. Ten years later, Kelamis and Verschuur (2000) investigated the application
of surface-related multiple elimination (SRME) (Verschuur et al. (1992), Chapter 4) to land data
sets. SRME was originally conceived as a method of eliminating surface multiples in marine data,
where the surface has a nearly uniform reflection coefficient. To make this method applicable for
land data, Kelamis and Verschuur balanced the data amplitudes in a pre-processing step so as
to have smooth multiple prediction operators. They obtained good multiple suppression in land
data sets for which other methods (moveout discrimination and predictive deconvolution) were
unsatisfactory.

Technologies for recording exploration-quality seismic data on the sea floor have become viable
only since about 1990. The main difficulty with sea-floor recording (other than hardware issues) is
the impact of the receiver ghost reflection and subsequent water-column reverberations on the data
bandwidth. Many years ago, J. E. White (1965) proposed a solution to that problem for pressure
measurements. Currently, the seismic industry has many schemes based on White’s idea to record
both pressure and the vertical component of particle velocity and combine those measurements
to cancel reverberations in the water column. Barr (1997) presents an overview of this method
and Barr et al. (1997) compare several different variations of the method. Amundsen et al.
(1998) describe a generalization of the concept: up/down splitting based on the elastodynamic
representation theorem. Unlike earlier methods, their algorithm is valid for a dipping sea floor with
medium parameters that vary laterally. Osen et al. (1999) extended White’s concept to remove
water-layer multiples from multicomponent sea-floor data, including the horizontal components of
particle velocity. Finally, Amundsen (2001) describes an algorithm, based on up/down wavefield
separation, that removes the effect of the free surface entirely as well as accomplishing signature
deconvolution. Up/down wavefield separation requires two recordings: either pressure and the
vertical component of particle velocity or pressure and its vertical derivative. The method also
requires measurement of the direct arrival from the marine source.

Although marine data sets recorded by towed streamers and ocean-bottom sensors differ in many
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ways, they do have one characteristic in common: the receivers are deployed in a horizontal or near-
horizontal plane. Sonneland et al. (1986) describe using data recorded with two horizontal marine
streamers, one above the other in the vertical plane, to accomplish receiver deghosting. Their
algorithm is based on up/down wavefield separation, and thus, as in Amundsen (2001) allows
both dereverberation and designature. An alternative vertical acquisition scheme is to deploy
entire marine cables vertically, a method developed during the 1990’s. As with the borehole VSP
method, vertical marine cables allow separation of the recorded pressure wavefield into its up- and
down-going components. That capability by itself does not, however, solve the multiple problem.
Wang et al. (2000) describe attenuating multiples in vertical cable data using a three-step process:
a common-shot τ -p filter (Yilmaz, 2001 ) to remove receiver ghost multiples, common-receiver
deconvolution to remove source ghosts, and a Radon filter to remove other multiples.
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Chapter 8

Tutorials, reviews and case histories

The papers in this chapter were written specifically to educate the reader about various aspects of
multiple attenuation technology. They are divided into two sets: 1) general reviews, overviews, and
case histories, and 2) comparisons of different wave theoretic approaches to multiple attenuation.
The first set emphasizes verbal, rather than mathematical, explanations, although some of the
papers do contain simple equations. Because of its subject, the second set, although also tutorial,
relies more heavily on mathematics. The papers in the second set refer liberally to many of the
papers in Chapters 4 and 5. Readers who are not intimately familiar with the math may want to
review those papers before perusing those included here.

Hardy and Hobbs (1991) present a tutorial that describes how to select a reasonably effective
multiple suppression strategy for any particular data set. The words “reasonably effective” mean
that multiples are adequately suppressed, without harming primary reflections, as efficiently as
possible. Given the wide range of suppression methods discussed in this volume, such a selection
process is by no means a trivial exercise. Hardy and Hobbs suggest that with a basic knowledge of
multiple attenuation theory and a preliminary data analysis, selection of the likely best suppression
method can be accomplished with very little actual data set testing. They provide a reasonable
application strategy and perspective for multiple attenuation methods that were widely available
in 1991.

The January 1999 issue of The Leading Edge contains a special section devoted to multiple attenu-
ation. Based partly on a 1997 research workshop organized by the SEG Research Committee, the
special section aimed to present the then current state-of-the-art in multiple attenuation technol-
ogy. Several of the papers in the special section were the work of the inverse scattering researchers
at Atlantic Richfield Company (ARCO). They were deliberately written in a tutorial style for The
Leading Edge . They include: “Multiple attenuation: an overview of recent advances and the road
ahead” (Weglein, 1999 ); “How can the inverse-scattering method really predict and subtract all
multiples from a multidimensional earth with absolutely no subsurface information?” (Weglein,
1999 ); and “A comparison of three multiple-attenuation methods applied to a hard water-bottom
data set” (Matson et al., 1999 ). A year later, a tutorial (Matson, 2000 ) on the requisite wavelet
estimation method for free-surface multiples was published. It describes the use of free-surface
multiple removal algorithms (see Chapters 4, 5, and 6) to estimate the acquisition wavelet.

Ellis and van Borselen (2003) present a case history involving wave equation-based surface multiple
attenuation (see Chapter 4). Their conclusion is important for all practitioners of this technology:
extensive analysis and quality control are required to gauge the performance of both multiple
prediction and adaptive subtraction. Reshef et al. (2003) offer an alternative approach to dealing
with the multiple problem. If multiple events can be reliably predicted, then those predictions
can be used as an interpretation tool. That is, the predicted multiples can alert an interpreter to
portions of a data set where he must be aware that multiples may cause interpretation difficulties.
Reshef et al. describe a purely kinematic prediction scheme that does not require pre-stack data.
This allows the method to be used in an interactive mode.

Chapters 4 and 5 describe two wave theoretical methods of multiple attenuation developed and
promoted during the 1980’s and 1990’s. Around 1998, the two most prominent groups involved
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in the development of those two methods - the inverse scattering developers at ARCO and the
feedback researchers at Delft University - began a collaborative project to compare and contrast
their approaches. One outcome of this collaboration was two pairs of jointly published papers that
compare the two methods. All four papers are included here. The first pair (Verschuur et al.,
1998 and Matson et al., 1998 ) are extended abstracts of two oral talks that were presented at the
1998 SEG Annual Convention. Two years later, the two groups again presented joint papers at
the 2000 Offshore Technology Conference (Berkhout et al., 2000 and Weglein, et al., 2000 ). In
summary: (1) The free-surface multiple removal method derived from the inverse scattering series
is physically complete, whereas the feedback procedure has a compromise that includes the absence
of the obliquity factor. It is argued that the effect of omitting the obliquity factor is partially
mitigated by not deghosting the source prior to multiple prediction. Even so, as offset increases the
error in predicted multiples becomes more significant and requires the angle-dependent nature of the
obliquity factor to be incorporated into an angle-dependent or offset-dependent adaptive “wavelet.”
Since the resulting “wavelet” is no longer equivalent to simply the acquisition wavelet, it should
not be used to deconvolve the seismic data. The obliquity-compromised form is computationally
efficient and results in a simple f-x formalism. However, that compromise is being revisited in
the current industry trend of seeking greater effectiveness in removing multiples. (2) For internal
multiples, the two formalisms are quite different between the two methods. However, the recent
recasting of the interface method as a selected “single interface” or “interval” procedure captures
some of the inclusiveness and lack of interpretive intervention of the internal multiple prediction of
the inverse scattering internal multiple procedure.

Ikelle et al. (2003), compare and contrast multiple attenuation methods derived from two different
integral equations: the Lippmann-Schwinger equation and the representation theorem. The authors
show that these two different starting points eventually lead to equivalent results. Finally, there
are two recent papers of interest on the subject of inverse scattering methods for attenuating
internal multiples. ten Kroode (2002) provides an important and rigorous analysis of the inverse
scattering internal multiple algorithm. A central assumption in the paper is that the attenuating
algorithm (that is, the leading term in a removal series) is designed to remove the leading order
approximation to internal multiples. In contrast, Weglein et al. (2003) recently demonstrated that
the internal multiple attenuation algorithm has greater efficacy on actual internal multiples than
on a Born approximation to those multiples. At this time, these researchers are actively engaged in
an ongoing collaborative communication about these matters. We are confident that this will soon
produce a deeper understanding of the strengths and underlying assumptions of current algorithms,
as well as generalizations that point the way toward improved algorithms for dealing with coherent
noise and troublesome composite events.
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Chapter 9

Multiples as signal

There are two basic views of seismic reflection data. The inclusive view treats all reflection data as
signal, since all events contain information about the subsurface. In contrast, the exclusive view
treats only primary reflections as signal and considers multiples an undesirable noise. The latter
view – that espoused by the first eight chapters of this volume – by far dominates, for a good
reason. Extracting accurate depth images from just primary reflection information is, in general, a
complex, difficult task. Conventional wisdom is that imaging with multiples must be significantly
more challenging. As the papers in this chapter illustrate, however, challenging conventional wisdom
can lead to surprising and promising ideas. Specifically, extracting useful information from multiple
reflections may not be as difficult as traditionally thought.

Reiter et al. (1991) demonstrate the use of receiver-side, first-order surface multiples to enhance
migrated primary reflection images in data recorded on the ocean bottom. This was accomplished
by using moveout discrimination to isolate the multiples of interest and then migrating them using a
ray-based Kirchhoff depth migration. The resulting composite image had improved signal-to-noise
ratio and extended lateral subsurface coverage. In contrast to Reiter et al., Berkhout and Verschuur
(1994) propose a general scheme for migrating all surface multiples in a data set rather than just
those with a specific ray path. The method requires isolation of the surface multiple component of
the seismic response and the formation of areal source wavefields using the total seismic response.
The authors note that the method can be extended to internal multiples, although no details are
given. Sheng (2001) suggests yet another method of using the information in surface multiples.
First-order surface multiples are cross-correlated with primaries to remove the first leg of their
raypath. The remaining second leg is migrated using the appropriate primary migration operator.
Youn and Zhou (2001) describe a migration scheme that propagates a source wavelet in the forward
direction and the recorded traces in a shot record in the backward direction, using - for both cases -
a full two-way scalar wave equation. The two propagated wavefields are correlated and summed over
all time indices to produce an image frame. The claim is that this scheme uses all types of events
to produce a depth migrated image directly from raw field records. Because of the massive data
storage and computational requirements, the authors applied the algorithm to only an extremely
decimated version of the synthetic Marmousi model. Finally, Berkhout and Verschuur (2003)
introduce the notion of a ”focal transform,” a variation on the feedback model method of multiple
prediction (see Chapter 4) that involves correlation rather than convolution. The focal transform
reduces the order of each surface multiple in a data set by one. This allows primary information to
be extracted from multiples. One application is the extracting of short-offset primary reflections
(that are not directly recorded) from longer-offset multiples (that are directly recorded).

The papers in this chapter clearly support the premise that the multiple wavefield in a seismic data
set contains useful information about the earth’s subsurface. Thus, arguably a better approach
to the multiple problem is using that information rather than discarding it. Based on the papers
included here, data correlation seems to be a key to making use of multiples. Other papers (among
them, for example: Tarantola, 1984; Clement, et al., 2001; and He and Schuster, 2003 ) have
suggested various seismic data inversion schemes that can accommodate the presence of multiply
reflected energy. Although such inversion papers are beyond the scope of this volume, they are
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recommended reading for anyone interested in all possible methods of dealing with the multiple
problem. Tarantola (1984) formulated the geophysical inverse problem in a Baysian framework
and described algorithms for estimating the minimum of an objective function based on local or
gradient descent optimization. Although data inclusive in philosophy, the limitations of these
specific indirect inversion approaches included their strong dependence on the choice of starting
model, the computation of sensitivity matrices or Frechet derivatives, manipulating large matrices
and inability to update the slowly varying part of the velocity field with field data. Indirect
inversion has progressed to global optimization methods – such as simulated annealing and genetic
algorithms – that avoid certain pitfalls with gradient methods. For example, Sen and Stoffa (1995)
describe several global optimization methods for application to geophysical inversion and, despite
significant computational needs, provide encouraging examples of effectiveness for 1-D inversion
with primaries and multiples as input and for migration velocity analysis with primaries.

Use of multiply reflected energy is still a relatively unexplored terrain. Other means of exploiting,
rather than attenuating, multiple energy may remain to be discovered. We expect further efforts
in this area in the years ahead.
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implementation

Sam T. Kaplan, Kristopher A. Innanen, Einar Otnes and Arthur B. Weglein

Abstract

We report on the progress of the internal multiple attenuation code-development and im-
plementation project at M-OSRP for the year 2004–2005. We develop a standard for M-OSRP
code generation and delivery that will serve as a benchmark for future large-scale programming
solutions created here; this serves primarily the research and educational interests of the con-
sortium, but aligns strongly with the interests of the sponsors. In this paper we further detail
the mathematical and physical underpinning for (a) the logic of the code structure and (b) a
number of optimization strategies for increasing the efficiency of this computationally expensive
procedure. Examples and illustrations of the code, the computation of its inputs from seismic
data, and the creation of synthetic data to validate and test the algorithm are provided. We
sketch out our plans for the coming year.

1 Introduction

In March of 2004 an implemenation and code-development of the internal multiple attenuation
(IMA) algorithm was announced. It has arisen to fill our research needs, to wit: our objectives
involve characterization of the scope and applicability of the algorithm and efforts to “move beyond”
attenuation (all described within this report), and these are served by having an in-house version
of the code for 1.5D, 2D, and potentially 3D applications. Furthermore, as we move our flagship
projects (namely algorithms acting on primaries) towards multiple dimensions, in which finite-
difference modelling will the necessary standard for input synthetic data creation, the need for an
operational IMA to remove the coherent noise will be very strong. Personnel and objectives (the
latter to be discussed below) were in place as of June 2004, and we are pleased to be able to report
progress in keeping with, and beyond, plans.

This note will serve as a report on the status, a delivery time-line, and an outline of the objectives
and standards for this code development. Moreover, it contains, with an appropriate level of detail,
the physically- and mathematically-based insights that lie behind the algorithm as it has been
implemented. This report, and the documentation that will accompany the delivery of the code,
therefore constitute an explicit description of the logic-train of the implementation.

In the remainder of section 1, we discuss explicitly the project objectives, and standards we have
set for implementing (and distributing) large-scale computer codes. We are entering a phase of
research in which our ideas and algorithms are expanding from 1D to multi-D, and as a consequence
matters of computation come to the fore. The IMA project should be considered not just on its
own, but as the testing ground upon which a standard for code implementation is developed that
all subsequent M-OSRP projects adhere to. We comment on our current vision of this standard of
what we refer to as “research-grade code”, and some of its features.
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In section 2, we discuss practical issues of an implementation of the IMA algorithm. Impor-
tant amongst these is the computation of the main input to the algorithm, which is akin to an
un-collapsed Stolt migration of the data with water speed, and as such involves familiar issues of
avoidance of evanescence, and interpolation, etc. Other issues range from the “look” of the code, as a
set of transparently organized, and interchangeable processing tasks, to order-of-operations charac-
terization of the computational burden of the algorithm and comparisons to free-surface de-multiple
methods, to integral identities and representations that, although mathematically equivalent, lead
to varying levels of computational efficiency.

In section 3 we provide some numerical examples of the IMA code working on 1D and 2D pre-stack
synthetic data sets, and in particular comment on the stringent requirements that the IMA algo-
rithm places on forward modelling procedures as generators of synthetics for validation purposes.
We discuss an appropriate finite-difference approach and an M-OSRP implementation of this code
that will be made available at the time of the IMA code delivery.

Finally in section 4 we summarize the project to date and comment on objectives for the 2005–2006
year.

1.1 Project objectives and code delivery time-line

2004–2005 is the first year in which the projects of M-OSRP are leading to the construction (and
delivery) of large-scale codes. The IMA implementation has been carried out with an eye for
developing a set of code-writing and delivery objectives that serves the research and educational
needs of the group internally. Hence we will devote some space in this year’s report to carefully
outlining these objectives. The 1D and 2D pre-stack versions of the internal multiple attenuation
code will be made available to the sponsors at the end of May 2005. At that time, an auxiliary
forward modelling code for validation of the IMA algorithm will be distributed also.

1.2 “Research-grade code”: a standard for M-OSRP software

Our objective is to develop theory and algorithms for the processing and inversion of seismic
data that directly address actual concerns of the petroleum industry. The validation of these
algorithms requires code development, and our internal standards for code-writing will result in
implementations of all of our algorithms that will be shared and discussed with sponsors. The
research interests of M-OSRP suggests a standard for our code generation that we refer to as
“research-grade”.

Our standard for writing large scale codes is borne out of the research requirements of the students
and associates at M-OSRP. Every project is in general linked to every other project, a point that
has been hit upon repeatedly: many projects involve the creation of processing algorithms, the
output of which is the input to other projects. Moreover, many of the research projects underway
span several “generations” of graduate students and researchers; new graduate students may by
necessity inherit the codes and implementations of senior graduate students.

In either case, there is a need for a coding style and standard for documentation and design that
makes use and understanding of the implementation straightforward for others. These internal
research needs lead to a schema for code production that involves:
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1. Documentation at the level of:
a. descriptive report writing,
b. pseudo-code,
c. commenting within code; and

2. Code design that
a. renders the logic of the algorithm transparent, and
b. is straightforward to alter.

The remainder of this report is an initial model of algorithm description, logic, documentation and
pseudo-code.

2 Implementing the IMA algorithm

We begin the discussion by quoting the form of the algorithm; readers are directed to any one
of the references herein. We will consider two versions of the IMA algorithm in the analysis and
discussions of this paper. The 1D normal incidence algorithm is (3)

b3IM (ω) =

∫

∞

−∞

b1(z1)e
i2kz1

∫ z1−ǫ

−∞

b1(z2)e
−i2kz2

∫

∞

z2+ǫ

b1(z3)e
i2kz3dz3dz2dz1 (1)

where b1(z) = D(z) and D(z) is the data trace, in pseudo-depth z, obtained from a normally
incident experiment. In two dimension, the algorithm is written (5; 4),

b3IM (kgx, ksx, ω) =
1

(2π)2

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

ei(kgz+k1z)z1b1(kgx, k1, z1)

∫ z1−ǫ

−∞

e−i(k1z+k2z)b1(k1, k2, z2)

·

∫

∞

z2+ǫ

ei(k2z+ksz)z3b1(k2, ksx, z3)dz3dz2dz1dk1dk2 (2)

where
b1(kgx, ksx, kz) = −i2kszD(kgx|ksx; kz) (3)

and D(kgx|ksx; kz) is the downward continued scattered wave-field.

Broadly, the output of this code is b3IM (kgx, ksx, ω), in one or other case of dimensionality. It is
a quantity in data space that is an approximation to the negative of the internal multiples in the
input data, ready for subtraction. The input, b1, is closely related to the data, and includes no
auxiliary information apart from water speed.

The task of this project is to compute the inputs and integrals of equations (2) and (3) efficiently
and accurately. The first ingredient, then, is seismic data in the form of b1(z) (or b1(kgx, ksx, z)),
where z is pseudo-depth. The second ingredient is a chosen reference wave-speed c0 (e.g. water
speed) whose use is two-fold. First, it maps the data from two way travel time t to pseudo-depth
z. In one dimension this relation is, simply, z = c0t/2, and in two dimensions, the mapping is
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Figure 1: 1D attenuation internal multiple attenuation example. (a) Data with primary (P1, P2) and internal
multiple (M1) events. (b) Data with, only, internal multiple (M1, M2) events. (c) Internal multiples predicted by the
algorithm. The data is generated from the model in (d).

provided by fk migration. Second, c0 is used in the computation of k = ω/c and kz = kgz + ksz

where kgz and ksz are given by the dispersion relations,

kgz = −sgn(ω)

√

ω2

c2
0

− k2
gx ksz = −sgn(ω)

√

ω2

c2
0

− k2
sx. (4)

The third and final ingredient is ǫ > 0, whose value is chosen to ensure that the scattering interac-
tions inherent in equations (1) and (2) are representative of only internal multiples, and do not, in
addition, predict primary events.

Figure 1 illustrates the algorithm in one dimension. Figure 1b plots the data’s internal multiples,
where the data (Figure 1a) is synthesized from the one dimensional Earth model shown in Figure 1d.
Figure 1c is the approximation to those internal multiples afforded by the multiple attenuation
algorithm. The phase of the predicted multiples exactly matches that of the data, while their
amplitudes differ (3).

2.1 A quick look at the code

Before we discuss this computation in a more detailed way, we briefly consider the form of the code,
in other words we describe the look and feel of how these algorithm details appear in the code.

In the computation of b3IM , we identify a variety of sub-tasks of the algorithm, many of which are
standard to any processing shop: for instance, sorting, Fourier transforms, etc. Each of these tasks
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have been implemented from the ground up in this project, but it is likely and expected that many
of these functions will be dropped and replaced by in-house procedures.

A goal of this project has been to make that as simple as possible. Figure 2 contains an illustration
of a particular portion of the code (in fact, the portion that computes b1, the details of which are
discussed in section 2.2). Each “paragraph” of the code corresponds to a task, and so the processing
flow – modular as such – is easily altered.

Figure 2: Illustration of the code (in this case the computation of b1). The organization is such that separable

subtasks of the algorithm are easily removed and replaced by a user’s preferred algorithm or subroutine.

2.2 Computing the input to IMA: from data to b1

In the previous section, we state that, for two spatial dimensions, the first ingredient required
by the internal multiple attenuation algorithm is b1(kgx, ksx, z). This quantity is provided by
equation (3) where D(kgx|ksx; kz) is the wave-field downward continued from the measurement
surface, and −i2ksz is called the obliquity factor. We effect the downward continuation of the data
by a change of variables from ω to kz. This change of variables is determined by the dispersion
relation (equation (4)).

The quantities b1 and b3IM are model-type independent, that is, their form does not change re-
gardless of whether the medium of interest has been determined to behave acoustically, elastically,
anelastically, etc. The input b1 has been designed this way (Weglein et al., 1997), as an alteration to
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the quantity that is normally found under desired component of the third-order inverse scattering
series integral.

In practice, D(kgx|ksx; ω), and thus D(kgx|ksx; kz) are only known for a finite set of values. If
D(kgx|ksx; ω) is computed using fast Fourier transforms, then it will be evaluated on some regular
grid in ω; but, given the nonlinearity of the dispersion relation, on some irregularly sampled grid
in kz. To facilitate the use of the fast Fourier transform in computing an integration over kz, it is
first necessary to interpolate such that the grid in ω becomes irregular, and the grid in kz becomes
regular. This mapping of D from a regular grid in ω to an irregular grid in ω is achieved using sinc
interpolation.

We consider the interpolation for two spatial dimensions. The irregular grid for ω is chosen accord-
ing to (2),

ω(kgx, ksx, kz) =
c0kz

2

√

(

1 +
(kgx + ksx)2

k2
z

)(

1 +
(kgx + ksx)2

k2
z

)

(5)

and some regular grid in kz. In detail, we (1) form regular grids in time tr and temporal frequency
ωr,

tr =
[

0 ∆t 2∆t · · · (n− 1)∆t
]

ωr =
[

0 ∆ω 2∆ω · · · (n/2)∆ω −(n/2− 1)∆ω −(n/2− 2)∆ω · · · −∆ω
]

where n is an even integer and ∆ω = 2π/(n∆t). (2) we find corresponding regular grids in pseudo-
depth and vertical wave-number using the reference wave-speed c0,

zr =
[

0 c0∆t/2 c0∆t · · · c0(n− 1)∆t/2
]

=
[

0 ∆z 2∆z · · · (n− 1)∆z
]

kzr =
[

0 ∆kz 2∆kz · · · (n/2)∆kz/2 −(n/2)∆kz −(n/2− 2)∆kz · · · −∆kz

]

where ∆kz = 2π/(n∆z). (3) The irregular ωi is computed according to equation (5) such that

ωi = {ω(kgx, ksx, kz)|kz ∈ kzr} .

Following steps (1)-(3), outlined above, we find ωi corresponding, precisely, to the desired regular
grid kzr.

The mapping of D(kgx, kgy|ksx, ksy; ω) from ωr to ωi, and thus kzr, requires an interpolation from

Dr = {D(kx, ky, ω)|ω ∈ ωr}

to
Di = {D(kx, ky, ω)|ω ∈ ωi} .

We utilize sinc interpolation to effect this mapping, which given adequate bandwidth in D provides
a perfect result. We consider the real and imaginary parts of Dr, R[Dr] and I[Dr], separately. For
the moment, we consider only the real component, and its convolution with a sinc filter (the exact
same analysis holds true for the imaginary component),

h(ω) = sinc(βnω) =
sin(βnω)

βnω
(6)
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where βn is the appropriate Nyquist frequency of Dr:

βn =
π

∆ω

To avoid aliasing, βn must exceed the bandwidth of Dr, but βn is inversely proportional to ∆ω
which, in turn, is inversely proportional to the duration of Dr(kgx|ksx, t) in time. This means that
βn is proportional to the duration of Dr(kgx|ksx, t), and that we can avoid aliasing by padding in
time such that

βn > B

and B is the bandwidth of Dr(kgx|ksx, ω). In our algorithm, we pad R[Dr] out to at least 2n/0.6
points, and convolve it with an 8-point sinc filter to effect the interpolation, providing

Di = {D(kgx|ksx, ω)|ω ∈ ωi} = {D(kgx|ksx, kz)|kz ∈ kzr}

which is the downward continued wave-field.

While the dispersion relation does provide a mapping between ω and kz, it is evident from equa-
tion (4) that for certain values of (kgx, ksx, ω), kz will be complex. The corresponding portion of
the wave-field is called evanescent, and is not used in the computation of b1. A trivial analysis of
equation (4) shows that the non-evanescent portion of the wave-field, corresponding to real values
of kgz and ksz, is found when

{|kgx|, |ksx|} ≤
ω

c0
,

and only frequencies that obey this inequality are used to compute b1.

Taking the above considerations into account, we present a pseudo-code for the computation
b1(kgx, ksx, z) in Algorithm 1, and which is, therefore, a necessary prerequisite to the internal
multiple attenuation algorithm.

Algorithm 1 Computation of b1(kgx, ksx, z)

1: Fourier transform: D(xg|xs; t)→ D(kgx|ksx; t).
2: for each (kgx, ksx) pair do

3: Zero pad D(xg|xs; t) in time to avoid aliasing (> 2n/0.6 samples).
4: Fourier transform: D(kgx|ksx; t)→ D(kgx|ksx; ω)
5: Isolate the non-evanescent portion of D(kgx|ksx; ω) by the dispersion relation.
6: Given a regular grid in kz, compute an irregular grid in ω.
7: Do sinc interpolation: D(kgx|ksx; ωr)→ D(kgx|ksx; ωi)→ D(kgx|ksx; kzr).
8: Apply the obliquity factor: b1(kgx, ksx, kz) = −i2kszD(kgx|ksx; kz).
9: Inverse Fourier transform: b1(kgx, ksx, kz)→ b1(kgx, ksx, z).

10: Truncate the data in z, thereby reversing the zero padding operation.
11: end for

2.3 The computational expense of IMA: a comparison to 3D FSMR

To get a handle on the computational expense of IMA, we compare the computation of b1(kgx, ksx, ω)
and equation (2) with an implementation of the expression for the free surface multiple elimination
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algorithm (e.g. Weglein et al., 1997) in three spatial dimensions, given by

D′(kgx, kgy|ksx, ksy; ω) =

∫

∞

−∞

∫

∞

−∞

D(kgx, kgy|kx, ky; ω)2ikszD(kx, ky|ksx, ksy; ω)dkxdky. (7)

Assuming that each of the dimensions contains the same number of samples, the 3D data have N5

samples. Let us consider the calculation of equation (7) for a single realization of D′(kgx, kgy|kx, ky; ω).
The integrals require N2 summation operations. For a single temporal frequency, computing the
left hand side for all wave numbers, therefore, requires N4 summations. Hence, a very rough
estimate of the 3D free surface multiple attenuation involves N6 summations for each temporal
frequency component.

Now consider the internal multiple attenuation algorithm for two spatial dimensions (equation (2)).
Assuming each dimension contains N samples, the 2D data have N3 samples. Let us now consider
the case with single temporal frequency. For each combination of source/receiver coordinates
(N2) we need to calculate five nested integrals, involving on the order of N5 summations. Hence,
the 2D internal multiple attenuation is of order N7 summations. Additionally, b1 requires Stolt
migration involving both fast Fourier transforms and sinc interpolations. Hence, we conclude that
the computational complexity of the 2D internal multiple attenuation algorithm is greater than the
3D Free surface multiple attenuation algorithm.

2.4 Strategies for computational efficiency

The computational demand of the internal multiple attenuation algorithm is such that effort ex-
pended in developing reductions in its complexity are well-worthwhile. Here we discuss three
categories of strategy for increasing the efficiency of IMA. The first is based on mathematical
considerations of the algorithm itself, and more- vs. less-efficient, although fully equivalent, repre-
sentations of IMA quantities. The second is based on the ability to limit the integration intervals
of the method with a knowledge of the dip, or maximum dip, of structures in the medium. It is
important to emphasize that prior knowledge of this kind is not a requirement of the method, but
that it can be used to accelerate its computation.

ALGORITHMIC OPTIMIZATIONS

The one and two dimensional multiple attenuation algorithms presented in equations (1) and (2)
respectively, both require the evaluation of a triple nested integral in pseudo-depth z. We consider
two simplifications to the algorithms. First, by decoupling the two most inner integrals, and,
second, by finding an efficient recursive formulation.

First, we consider the decoupling of the two most inner nested integrals. To aid in the analysis, we
introduce the following lemma,

Lemma 1. Let f(z) and g(z) be any integrable functions. Then,

∫

∞

−∞

f(z)

∫ z−ǫ

−∞

g(z′)dz′dz =

∫

∞

−∞

g(z)

∫

∞

z+ǫ

f(z′)dz′dz
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Proof.

∫

∞

−∞

f(z)

∫ z−ǫ

−∞

g(z′)dz′dz =

∫

∞

−∞

f(z)

∫

∞

−∞

H(z − ǫ− z′)g(z′)dz′dz

=

∫

∞

−∞

f(z′)

∫

∞

−∞

H(z′ − ǫ− z)g(z)dzdz′

=

∫

∞

−∞

g(z)

∫

∞

−∞

H(z′ − (z + ǫ))f(z′)dz′dz

=

∫

∞

−∞

g(z)

∫

∞

z+ǫ

f(z′)dz′dz.

The de-coupling of the nested integrals follows from Lemma 1. In particular, we let

f(z) = b1(z)eikzz

g(z) = b1(z)e−ikzz

∫

∞

z+ǫ

b1(z1)e
ikzz1dz1

so that equation (1) becomes

b3IM (kz) =

∫

∞

−∞

f(z1)

∫ z1−ǫ

−∞

g(z2)dz2dz1

=

∫

∞

−∞

g(z1)

∫

∞

z1+ǫ

f(z2)dz2dz1

=

∫

∞

−∞

b1(z1)e
−ikzz1

∫

∞

z1+ǫ

b1(z2)e
ikzz2dz2

∫

∞

z1+ǫ

b1(z2)e
ikzz2dz2dz1

=

∫

∞

−∞

b1(z1)e
−ikzz1

[
∫

∞

z1+ǫ

b1(z2)e
ikzz2dz2

]2

dz1 (8)

For the evaluation of the two inner integrals, this reduces the complexity of the algorithm–from
O(n2) to O(n). In two dimensions, we have a similar analysis. From equation (2), we consider the
integrations over pseudo-depth by defining,

ρ(kgx, ksx, k1, k2, ω) =

∫

∞

−∞

b1(kgx, k1, z1)e
i(kgz+k1z)z1

∫ z1−ǫ

−∞

b1(k1, k2, z2)e
−i(k1z+k2z)z2

·

∫

∞

z2+ǫ

b1(k2, ksx, z3)e
i(k2z+ksz)z3dz3dz2dz1, (9)

where

b3IM (kgx, ksx, ω) =

∫

∞

−∞

∫

∞

−∞

ρ(kgx, ksx, k1, k2, ω)dk1dk2.

To enable the application of Lemma 1, we let

f(z) = b1(kgx, k1, z)ei(kgz+k1z)z

g(z) = b1(k1, k2, z)e−i(k1z+k2z)z

∫

∞

z+ǫ

b1(k2, ksx, z1)e
i(k2z+ksz)z1dz1,

91



Internal multiple attenuation: code development MOSRP04

so that equation (9) becomes

ρ(kgx, ksx, k1, k2, ω) =

∫

∞

−∞

f(z1)

∫ z1−ǫ

−∞

g(z2)dz2dz1 =

∫

∞

−∞

g(z1)

∫

∞

z1+ǫ

f(z2)dz2dz1,

and substituting for our definitions of f and g gives,

ρ(kgx, ksx, k1, k2, ω) =

∫

∞

−∞

b1(k1, k2, z1)e
−i(k1z+k2z)z1

[
∫

∞

z1+ǫ

b1(k2, ksx, z2)e
−i(k1z+k2z)z2dz2

]

·

[
∫

∞

z1+ǫ

b1(kgx, k1, z2)e
i(kgz+k1z)z2dz2

]

dz1 (10)

Once again, we see the de-coupling of integrals, reducing the complexity of computing the inner
most two integrals from O(n2) to O(n).

We can apply a further simplification to the one and two dimensional algorithms in equations (8)
and (10) by using a recursive formulation for evaluating the integrals. First, we consider the
algorithm in one dimension. To facilitate the ensuing analysis, we let

f(k, z) = b1(z)e−i2kz

g(k, z) = b1(z)ei2kz

so that equation (8) becomes

b3IM (k) =

∫

∞

−∞

f(k, z1)

[
∫

∞

z1+ǫ

g(k, z2)dz2

]2

dz1, (11)

and approximating the integrals in equation (11) with Riemann sums gives

b3IM (k) = f1 [g1+ǫ + g2+ǫ + · · · ]2 + f2 [g2+ǫ + g3+ǫ + · · · ]2 + · · ·

where fi = f(k, zi), gi+ǫ = g(k, zi + ǫ) and zi ∈ z. Next, we write

b3IM (k) =
∑

i

f(k, zi)Gi(g(k, z))2

where
Gi(g(k, z)) = [gi+ǫ + gi+1+ǫ + · · · ] (12)

It is evident, from equation (12), that Gi can be computed recursively:

G1(g(k, z)) = g1+ǫ + g2+ǫ + · · ·

G2(g(k, z)) = g2+ǫ + g3+ǫ + · · · = G1(g(k, z))− g1+ǫ

G3(g(k, z)) = g3+ǫ + g4+ǫ + · · · = G2(g(k, z))− g2+ǫ (13)

· · ·

Thus, providing a further efficiency to the internal multiple attenuation algorithm.
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In two spatial dimensions, we find a similar relation. Letting

f(k1, k2, ω, z) = b1(k1, k2, z)e−i(k1z+k2z)z

g(k1, kgx, ω, z) = b1(kgx, k1, z)ei(kgz+k1z)z

h(k2, ksx, ω, z) = b1(k2, ksz, z)ei(k2z+ksz)z,

equation (10) becomes

ρ(k1, k2, kgx, ksx, ω) =

∫

∞

−∞

f(k1, k2, ω, z1)

[
∫

∞

z1+ǫ

g(k1, kgx, ω, z2)dz2

] [
∫

∞

z1+ǫ

h(k2, ksx, ω, z2)dz2

]

dz1.

In analogy with the one dimensional case, we approximate the integrals with Riemann sums,

ρ(k1, k2, kgx, ksx, ω) = f1 [g1+ǫ + g2+ǫ + · · · ] [h1+ǫ + h2+ǫ + · · · ]

+ f2 [g2+ǫ + g3+ǫ + · · · ] [h2+ǫ + h3+ǫ + · · · ] + · · ·

where fi = f(k1, k2, ω, zi), gi+ǫ = g(k1, kgx, ω, zi + ǫ), hi+ǫ = h(k2, ksx, ω, zi + ǫ) and zi ∈ z. Next,
we write

ρ(k1, k2, kgx, ksx, ω) =
∑

i

f(k1, k2, ω, zi)Gi(g(k1, kgx, ω, z))Hi(h(k2, ksx, ω, z))

and note the recursive formulation for Gi and Hi, such that

G1(g(k1, kgx, ω, z)) = g1+ǫ + g2+ǫ + · · ·

G2(g(k1, kgx, ω, z)) = g2+ǫ + g3+ǫ + · · · = G1(g(k1, kgx, ω, z))− g1+ǫ

G3(g(k1, kgx, ω, z)) = g3+ǫ + g4+ǫ + · · · = G2(g(k1, kgx, ω, z))− g2+ǫ

· · ·

and

H1(h(k2, ksx, ω, z)) = h1+ǫ + h2+ǫ + · · ·

H2(h(k2, ksx, ω, z)) = h2+ǫ + h3+ǫ + · · · = H1(h(k2, ksx, ω, z))− h1+ǫ

H3(h(k2, ksx, ω, z)) = h3+ǫ + h4+ǫ + · · · = H2(h(k2, ksx, ω, z))− h2+ǫ

· · · .

The algorithmic optimizations to the one and two dimensional multiple attenuation algorithms,
described above, are arrived at through mathematical analysis of the algorithms, and provides a
first pass at a suitable algorithm, the pseudo-code for which is shown in Algorithm 2. See the
examples section for numerical examples of the output of these optimizations.

LIMITING THE INTEGRATION INTERVAL GIVEN A MAXIMUM DIP

Here, we consider an additional optimization that can be applied to the internal multiple attenuation
algorithm. In particular, we concern ourselves with simplifications afforded by some prior knowledge
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Algorithm 2 Internal Multiple Attenuation

1: Using Algorithm 1, compute b1(kgx, ksx, z).
2: for each positive ω in b3IM (kgx, ksx, ω) do

3: Determine the domain of non-evanescence using the dispersion relation [kmin, kmax] .
4: for each non-evanescent (kgx, ksx) pair do

5: Initialize b3(kgx, ksx, ω(kz)) = 0.
6: for each non-evanescent (k1, k2) pair do

7: Compute ρ(kgx, ksx, k1, k2, ω).
8: Update: b3IM (kgx, ksx, ω)← b3IM (kgx, ksx, ω) + ρ(kgx, ksx, k1, k2, ω).
9: end for

10: end for

11: end for

12: Inverse Fourier transform: b3(kgx, ksx; ω)→ b3IM (xg, xs; ω).
13: Inverse Fourier transform (complex to real): b3(xg, xs, ω)→ b3IM (xg, xs, t).

kk

ksx kgx

ksz
kgz

xs xg

(a) (b) (c)

Figure 3: The one dimensional model in (b) provides a simplification for the two dimensional multiple attenuation
algorithm. In particular, (a) and (c) allow us to conclude that ksx = kgx.

k
k

ksx kgx

ksz kgz

xs xg

(a) (b) (c)

θ
θ

θD

Figure 4: If a two dimensional model can be characterized by the dip of its interface θD, as shown in (b), then we
can find a simplification to the two dimensional algorithm. In particular, (a) and (c) allow for equation (14). The
simplification utilizes both θD and the angle of incidence θ.
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of the model. We consider both one dimensional models, and two dimensional models which can
be characterized by the dips of their interfaces.

For 1.5D data, we have, as is illustrated in the examples section in Figure 3, ksx = kgx. This, in
turn, implies that ρ(kgx, ksx, k1, k2, ω) need only be evaluated when

kgx = ksx = k1 = k2,

thus providing a significant increase in efficiency when the internal multiple attenuation algorithm
is applied to 1.5D data. In particular, it allows for the simplification of equation (2) so that it
becomes,

b3IM (kgx = ksx, ω) =
1

(2π)2

∫

∞

−∞

b1(k1 = k2 = ksx, z1)e
−i(k1z+k2z)z1

·

[
∫

∞

z1+ǫ

b1(kgx = k1 = ksx, z2)e
i(kgz+k1z)z2dz2

] [
∫

∞

z1+ǫ

b1(k2 = ksx, z2)e
i(k2z+ksz)z2dz2

]

dz1.

Hence, for 1.5D data, the computational complexity of evaluating b3IM for a given value of kgx is
equivalent to the one dimensional, normally incident algorithm.

If a two dimensional model is restricted to a single dipping interface, with dip θD (see Figure 4),
then it is readily shown that

kgx = ksx

sin(θ + θD)

sin(θ − θD)
= f(ksx, θ, θD) = f(ksx, ω, θD)

where θ is the angle of the plane wave incident on the dipping event, and can be expressed in terms
of kgx and θD,

θ = θD + sin−1

(

c0kgx

ω

)

.

Letting fsx = f(ksx, ω, θD), we have the following simplification to the internal multiple attenuation
algorithm in two spatial dimensions:

b3IM (kgx = fsx, ω) =
1

(2π)2

∫

∞

−∞

b1(k1 = k2 = fsx, z1)e
−i(k1z+k2z)z1

·

[
∫

∞

z1+ǫ

b1(kgx = k1 = fsx, z2)e
i(kgz+k1z)z2dz2

] [
∫

∞

z1+ǫ

b1(k2 = fsx, z2)e
i(ksz+kgz)z2dz2

]

dz1 (14)

In practice, it may be more useful to specify the maximum expected dip in the model, and eval-
uate equation (14) for a range of fsx. In addition to the simplifications described in this section,
reciprocity can be used to avoid redundant calculations.

3 Internal multiple attenuation examples

In this section we illustrate the output of the code for 1D and 2D pre-stack inputs; the figures
included are additionally designed to exemplify the dip arguments of the previous section. We
begin with a discussion of the forward modelling code used and its importance.
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Figure 5: The analytic wave-field in pictures. (a) The real component of the Hankel function is
a Bessel function of the first kind (solid line), and its imaginary component is a Bessel function
of the second kind (dashed line). (b) û(ρ0, φ, t) plotted versus t when f is a delta function. (c)
u(ρ0, φ, t) plotted versus t with, again, f a delta function. u(ρ, φ, t0) plotted versus ρ with (d) f a
delta function and (e) f a sinc function. (f) A snapshot of the wave-field u(ρ, φ, t0) where, again,
f is a sinc function.

3.1 Creating synthetic data appropriate to the IMA algorithm

The internal multiple attenuation algorithm expects to process data constructed from a complete
solution to the wave equation. In our tests, we found that data modeled using a high-frequency
approximation to the wave equation (i.e. ray-tracing), results in phase errors in the predicted
multiples; it is instructive to see that the multiple prediction algorithm, which is extracted from a
series solution to the wave equation, does, in-fact, require input data constructed from a complete
solution to the wave equation.

The finite difference method used in this paper follows the work of Alford et al. (1) in which initial
time snapshots of the wave-field, used to bootstrap the finite difference equations, are derived
analytically. Here, we present a brief analysis of these snapshots.

The finite difference algorithm propagates a solution to the acoustic wave equation
[

∇2 +
1

c2

∂2

∂t2

]

u(ρ, φ, t) = −4π
δ(ρ− ρs)δ(φ− φs)f(t)

ρ
(15)

using a fourth order representation of the Laplacian. f(t) is the time variation of the source
distribution. As already mentioned, initial conditions for the finite difference algorithm are formed
from an analytic solution to equation (15) (1):

us(ρ, φ, t) =
1

2π

∫

∞

−∞

[

−iπH
(2)
0 (k|̺− ̺s|)

]

F (ω)eiωtdω

where |̺− ̺s| is the distance from the source, and H
(2)
0 is the second Hankel function of order 0,

H
(2)
0 (z) = J0(z)− iY0(z).

J0 and Y0 are Bessel functions of the first and second kind respectively, and are plotted in Fig-
ure (5)a. Notice that Y0(z) (dashed line) has a vertical asymptote at z = 0. This means that
us(ρ, φ, ω) is undefined where either ω = 0 or ̺ = ̺s.

We account for the vertical asymptote of Y in two steps. First, we simply let us = 0 when ̺ = ̺s.
Second, we set the DC component of us to zero giving an approximate wave-field ûs(ρ0, φ0, t)
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(Figure 5b). For a given value of ρ = ρ0, we expect u(t, ρ0, φ0) = 0 for t < t0 = ρ0/c. In other
words, the displacement in the medium is null until the first arrival of energy. Hence, an appropriate
scheme for computing the DC component udc of the wave-field is given by the mean,

udc =
1

3
4 t0

∫ 3

4
t0

0
u(t)dt. (16)

The corrected signal,
u(ρ0, φ0, t) = û(ρ0, φ0, t) + udc,

is plotted in Figure 5c, and has the expected behavior for t < t0. Figure 5d plots u(ρ, φ0, t0) for
t0 = 0.09s. Figures 5a-d are computed when f is a delta function. Figure 5e plots u(ρ, φ0, t0) when
f is a zero-phase sinc function. Finally, Figure 5f plots u(ρ, φ, t0) for φ ∈ [0, 2π) and ρ ∈ [0, 255].

As an illustration of the algorithm’s dependence on the type of input data, consider Figure 6 which
plots data D(xg|xs; t), b1(xg, xs, t) and b3IM (xg, xs, t) for a single trace (xs = xg = 400m) taken
from 1.5D data similar to Figure 8. Figures 6a,c,e plot D(xg|xs; t), b1(xg, xs, t) and b3IM (xg, xs, t)
given ray-traced data, and Figures 6b,d,f plot the same for finite differenced data. A quick, visual
inspection of the plots reveals the effects of the low-frequencies missing from the ray-traced data.

3.2 A 1D IMA example

Figures 7 and 8 illustrate the internal multiple attenuation algorithm for 1.5D data. Figure 8a
plots data generated from the model in Figure 7. The predicted multiples are plotted in Figure 8.

3.3 A 2D IMA example

We consider the example presented in Figures 9 and 10. The data in Figure 10a is produced
using a one parameter, acoustic finite difference code applied to the model in Figure 9 . The data
D(xg|xs; t), without the direct arrival and effects of the free-surface, is collected for

{(xs, xg, t)|xs = 0, 10, . . . 800m, xg = 0, 10 . . . 800m, t = 0, .005, . . . 1.5s} .

Figure 10a plots a subset of this data, for xs = 400 . . . 600m and xg = 400 . . . 600m. It is plotted
in the pre-stack domain, and is organized into shot gathers. Visible in the data, are two primaries
and an internal multiple. Figure 10b plots the predicted internal multiple provided by the internal
multiple attenuation algorithm.

4 Summary and conclusions

This paper reports on the progress of the internal multiple attenuation algorithm code develop-
ment project for the 2004–2005 year. We document progress on transparent code development in
accordance with our standards for M-OSRP code design (“research-grade code”), often involving
mathematical and physical alterations and improvements to the algorithm for efficiency.
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Figure 6: Here, we consider the internal multiple attenuation algorithm applied to data generated, first using
ray-tracing, and second using finite differencing to produce 1.5D data sets. We generate 1.5D data sets, and plot,
for xs = xg = 400m, (a) the ray-traced data, (b) the finite differenced data. (c) b1 computed from the ray-traced
data, and (d) b1 computed from the finite differenced data. Finally, we plot the multiple prediction b3IM for (e)
the ray-traced data, and (f) the finite differenced data. Please note that the ray-traced data is modeled without
amplitude information.

z = 0m

z = 400m

z = 800m

2000m/s

3200m/s

6100m/s

Figure 7: A one dimensional model used to illustrate the internal multiple attenuation algorithm in two spatial
dimensions with the simplification kgx = ksx. The corresponding seismic data, and multiple estimation are shown in
Figure 8.
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Figure 8: (a) A subset of the data generated with finite differencing and the model in Figure 7, and (b) the corresponding internal multiple prediction.
Visible in the data are two primary events and the first order internal multiple.
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z = 0m

z = 600m

z = 300m

z = 800m

2000m/s

3200m/s

6100m/s

Figure 9: A two dimensional model used to illustrate the internal multiple attenuation algorithm in two spatial
dimensions. The corresponding seismic data, and multiple estimation are shown in Figure 10.

We are preparing to make two related codes available for the end of May 2005, the IMA code and
the finite difference forward modelling code that has been adapted to ideally test and validate the
de-multiple method.

The coming year will see a greater degree of testing of the algorithm on 2D cases, including and
especially instances that test the ability of the algorithm to handle pathological models set to
challenge the “lower-higher-lower in pseudo-depth” requirement (e.g., Nita and Weglein, 2005).

Further, we will characterize the 3D IMA problem in terms of computational burden; un-questionably
it is an enormous computing problem, by any definition of the word. We are investigating various
routes of parallelization of the problem and various platforms for same; we are benefiting strongly
from our contacts at IBM on this. For example, a working-team is sketching out the appropriateness
of an IBM BlueGene architecture to this end.
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Figure 10: (a) A subset of the data generated with finite differencing and the model in Figure 9, and (b) the corresponding internal multiple prediction.
Visible in the data are two primary events and the first order internal multiple.
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Inverse scattering internal multiple attenuation algorithm in
complex multi-D media: the pseudo-depth/vertical-time
monotonicity condition and higher dimension analytic analysis

Bogdan G. Nita and Arthur B. Weglein

Abstract

In this paper we discuss the multi-D inverse scattering internal multiple attenuation algo-
rithm focusing our attention on the prediction mechanisms. Roughly speaking, the algorithm
combines amplitude and phase information of three different arrivals (sub-events) in the data
set to predict one interbed multiple. The three events are conditioned by a certain relation
which requires that their pseudo-depths, defined as the depths of their turning points relative
to the constant background velocity, satisfy a lower-higher-lower relationship. This implicitly
assumes a pseudo-depth monotonicity condition, i.e. the relation between the actual depths and
the pseudo-depths of any two sub-events, is the same. We study the lower-higher-lower relation
in pseudo-depth and show that it is directly connected with a similar longer-shorter-longer re-
lationship between the vertical or intercept times of the sub-events and hence the pseudo-depth
monotonicity is equivalent to a vertical time monotonicity condition. The paper also provides
the first pre-stack analysis of the algorithm with analytical data showing how the sub-events are
selected and combined to exactly predict the time and well approximate the amplitude of an
interbed multiple. Among other results we show that the construction of internal multiples is
performed in the plane waves domain and, as a consequence, the internal multiples with head-
waves sub-events are also predicted by the algorithm. Furthermore we analyze the differences
between the time monotonicity condition in vertical or intercept time and total travel time and
show a 2D example which satisfies the former (and hence is predicted by the algorithm) but not
the latter. Finally we discuss one case in which the monotonicity condition is not satisfied by
the sub-events of an internal multiple which, as a consequence, will not be predicted. For these
cases, the monotonicity condition turns out to be too restrictive and we discuss ways of lowering
these restrictions and hence expanding the algorithm to address these types of multiples.

Introduction

The inverse scattering series is presently the only multidimensional method for inverting for the
properties of an unknown medium without adequate information about that medium. When the
series converges it achieves full inversion given the whole data set (including free surface and inter-
nal multiples) and information about a chosen reference medium. Carvalho (6) tested numerically
the convergence properties of the full inverse scattering series and found that the series converges
only when the reference medium of choice is within 11% from the actual medium, a non-realistic
situation. In the ’90’s, Weglein and collaborators developed the “subseries method” (for a history
and description see (20)) which consists in identifying task specific subseries in the full series, with
targeted usefulness and better convergence properties than the whole series. These subseries were
imagined to be a sequence of steps, similar to the processing steps undertaken in geophysical explo-
ration, which would achieve 1. Free surface multiple elimination; 2. Internal multiple elimination;
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3. Imaging in depth; and 4. Inversion for the medium properties. It is reasonable to assume,
and the experience showed this assumption to be true, that since the full series only requires data
and information about a reference medium to invert, the same holds for any of the four specific
subseries.

The inverse scattering series, and the subsequent task specific subseries, assume that the input data
satisfies several pre-requisites. First, it is assumed that the source signature or wavelet has been
deconvolved from the data. Second, both the source and receiver ghosts have been eliminated from
the collected data. Third, the collected data itself has an appropriate sampling or the data recon-
struction algorithms are able to improve the acquisition sampling to an appropriate degree. When
these prerequisites are not satisfied, the algorithms derived from this method will reach incorrect
conclusions/results e.g. false or no prediction of free-surface and internal multiples, incorrect loca-
tion of subsurface structures, and errors in parameter estimation. Last but not least we mention
that the algorithms are derived from a point-source point-receiver wave theory approach and any
deviations from that, e.g. source and receiver arrays, would have to be studied to understand how
they affect the algorithms.

In 1994, Araujo (2) identified the first term in the subseries for internal multiple elimination (see also
(19)). This first term by itself exactly predicts the time of arrival, or phase, and well approximates
the amplitude of internal multiples, without being larger than the actual amplitude, and hence it
represents an algorithm for attenuation. Weglein et al. (20) described the algorithm through an
analytic 1D example and 2D synthetic numerics. Field data tests were also performed showing
an extraordinary ability to predict difficult interbed multiples, e.g. superimposed primary and
multiple etc., where other methods have failed.

The inverse scattering internal multiple attenuation algorithm was found through a combination
of simple 1D models testing/evaluation and certain similarities between the way the data is con-
structed by the forward scattering series and the way arrivals in the data are processed by the
inverse scattering series. This connection between the forward and the inverse series was analyzed
and described by Matson (10), (11) and Weglein et al. (19), (20). Specifically, they showed that
an internal multiple in the forward scattering series is constructed by summing certain types of
scattering interactions which appear starting with the third order in the series. The piece of this
term representing the first order approximation to an internal multiple is exactly the one for which
the point scatterers satisfy a certain lower-higher-lower relationship in actual depth. Summing over
all interactions of this type in the actual medium results in constructing the first order approx-
imation to an internal multiple. By analogy, it was inferred that the first term in the subseries
for eliminating the internal multiples would be one constructed from events satisfying the same
lower-higher-lower relationship in pseudo-depth. The assumption that the ordering of the actual
and the pseudo depths of two sub-events is preserved, i.e.

zactual
1 < zactual

2 ⇐⇒ zpseudo
1 < zpseudo

2 , (1)

has been subsequently called “the pseudo-depth monotonicity condition”.

In this paper we further analyze this relation and show that it is equivalent to a vertical or intercept
time (here denoted by τ) monotonicity condition

zactual
1 < zactual

2 ⇐⇒ τ1 < τ2, (2)
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for any two sub-events. We also look at the differences between the time monotonicity condition in
vertical or intercept time and total travel time. The latter was pointed out by a different algorithm
derived from the inverse scattering series by ten Kroode (17) and further described by Malcolm and
M.V. de Hoop (9). We show a 2D example which satisfies the former (and hence is predicted by
the original algorithm) but not the latter. Finally we discuss one case in which the monotonicity
condition is not satisfied by the sub-events of an internal multiple in either vertical or total travel
time and consequently the multiple will not be predicted by either one of the two algorithms. For
these cases, the monotonicity condition turns out to be too restrictive and we discuss ways of
lowering these restrictions and hence expanding the algorithm to address these types of multiples.

In the context of the overall research efforts of M-OSRP, this paper represents a part of a project
to characterize, implement, and build on the internal multiple attenuation algorithm that is re-
ported on in this volume. Kaplan et al. (8) describe the development of a practical code to effect
numerical examples of this de-multiple procedure in 1D prestack and 2D regimes; they further
detail mathematically- and physically-based representations of the algorithm that lead to reduced
computation time. Ramı́rez and Weglein (13) meanwhile work to progress towards a method for
the elimination of interbed multiples through an analysis and incorporation of specific higher-order
terms that yet mimic the pseudo-depth relationships we discuss herein. Ramı́rez and Weglein (14)
concern themselves with the characterization of the attenuative nature of the algorithm. Here we
provide a characterization of a different sort, as summarized above.

The paper is structured as follows. In Section 2 we will discuss the definition of a multiple and its
evolution over time. In Section 3 we will describe the algorithm and show how a predicted multiple
is constructed from events in the data. A 1.5D example is analyzed in Section 4 with analytical
data and internal multiples with headwaves sub-events are shown to be predicted by the algorithm.
We further look in Sections 5 and 6 at several 2D examples to better understand the relationship
between the sub-events which are used by the algorithm to construct the phase and the amplitude
of the internal multiple. Some comments and conclusions are presented in the last section.

Definition of an internal multiple

The definition of an internal multiple evolved over time keeping in step with our understanding of
fundamental structure and processes that take place inside a medium. Once a certain definition is
in place, one can then start the development of algorithms which address the so called (and defined)
internal multiples to attenuate or even eliminate them. However, sometimes, after an algorithm
is developed, its analysis leads to new definitions or generalizations of the notions/concepts them-
selves. This was the case of the inverse scattering internal multiple algorithm and the definitions
resulted from it will be discussed in this section.

The early 1D models of a layered medium only allow up and down propagation and so it is easy
to imagine a primary as having only one upward reflection and a multiple as having two or more
upward reflection and one or more internal (i.e. not at the free surface) downward reflections.
Notice that the directions up and down are defined by the positioning of the measurement surface:
if an event is propagating towards the measurement surface it is said that it is moving upward. If
the event is moving away from the measurement surface it is said that it is moving downward. In
our discussion/pictures, we choose the x-axis to be along the measurement surface and hence the
up-down direction to coincide with moving backward and forward along the z-axis.
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Figure 1: An example of an upward, downward and a neutral reflection.

Figure 2: A more general definition of a primary and a multiple. The primary has one upward reflection and
any number of neutral reflections while the multiple has two or more upward reflections and any number of neutral
reflections.

When the medium is slightly more general, for example a 2D medium with only specular reflections,
a new type of reflection occurs which is neither upward nor downward (see Figure 1). We will call
this type of reflection a neutral reflection. For this situation we can easily generalize the definition
of a primary as an event which contains one upward reflection and any number of neutral reflections
and that of a multiple as an event which has two or more upward reflections, one or more downward
reflections and any number of neutral reflections (an example is shown in Figure 2). However this
definition does not cover the complexity of an arbitrary medium and there are events which do not
fit the definition of a multiple as given so far. For example, the events pictured in Figure 3 (a)(b) do
not have two upward reflections but a turning wave and a headwave respectively, while the event in
Figure 3(c) is even of a more complex nature consisting in a diffraction on one leg of the full event.
Recently, Weglein and Dragoset (21) have introduced more general definitions and designations for
primary and multiply reflected events, namely prime and composite events. According to those
definitions, a prime event is not decomposable into other recorded events such that those sub-
event ingredients combine by adding and/or subtracting time of arrival to produce the prime. A
composite event is composed of sub-events that combine in the above described manner to produce
the event. With these definitions, the events pictured in Figure 3 can be categorized as composite
events when their sub-events can be found in the recorded data. For example, the sub-events of the
event pictured in Figure 3(a) are the turning wave and the reflections from the shallow and deep
interfaces.

These definitions, which obviously generalize all the previous ones, and the notion of sub-events
where suggested by the inverse scattering internal multiple attenuation algorithm which is going
to be discussed in detail in the next sections.
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(b)(a)

(c)

Figure 3: Complex events difficult to include in a definition which only takes into account upward and downward
reflections

The inverse scattering series internal multiple attenuation algo-
rithm

The first term in the inverse scattering subseries for internal multiple elimination is (see e.g. (20))

b3(kg, ks, ω) =
1

(2π)2

∞∫

−∞

∞∫

−∞
dk1e

−iq1(εg−εs)dk2e
iq2(εg−εs)

∞∫

−∞
dz1e

i(qg+q1)z1b1(kg, k1, z1)

×
z1∫

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

∞∫

z2

dz3e
i(q2+qs)z3b1(k2, ks, z3) (3)

where z1 > z2 and z2 < z3 and b1 is defined in terms of the original pre-stack data with free surface
multiples eliminated, D′, to be

D′(kg, ks, ω) = (−2iqs)−1B(ω)b1(kg, ks, qg + qs) (4)

with B(ω) being the source signature. Here ks and kg are horizontal wavenumbers, for source and
receiver coordinates xs and xg, and qg and qs are the vertical wavenumbers associated with them.
The b3 on the left hand side represents the first order prediction of the internal multiples. An
internal multiple in b3 is constructed through the following procedure.

The deconvolved data without free-surface multiples in the space-time domain, D(xs, xg, t) can be
described as a sum of Dirac delta functions

D(xs, xg, t) =
∑

a

Raδ(t− ta) (5)
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representing different arrivals (primaries and internal multiples). Here Ra represents the amplitude
of each arrival and it is a function of source and receiver position xs and xg and frequency ω. When
transformed to the frequency domain the transformed function D(xs, xg, ω) is a sum

D̃(xs, xg, ω) =
∑

a

R̃ae
−iωta . (6)

Here ta is the total traveltime for each arrival and it can be thought of as a sum of horizontal
and vertical times ta = τa + txa (see e.g. (7), (18)), where txa is a function of xg and xs. After
Fourier transforming over xs and xg, the data is D̃(ks, kg, ω). The transforms act on the amplitude
as well as on the phase of the data and transform the part of the phase which is described by the
horizontal time txa. Hence D(ks, kg, ω) can now be thought of as a sum of terms containing eiωτa

with τa being the vertical or intercept time of each arrival

D̃(ks, kg, ω) =
∑

a

R̃′
ae
−iωτa (7)

and where R̃′
a is the double Fourier transform over xg and xs of R̃ae

−iωtxa . The multiplication by
the obliquity factor, 2iqs, changes the amplitude of the plane wave components without affecting
the phase; hence b1(ks, kg, ω) represents an effective plane wave decomposed data and is given by

b1(ks, kg, ω) =
∑

a

R̃′′
ae
−iωτa (8)

where R̃′′
a = 2iqsR̃′

a and whose phase, eiωτa , contains information only about the recorded actual
vertical or intercept time.

Notice that for each planewave component of fixed ks, kg and ω we have

ωτa = kactual
z zactual

a (9)

where kactual
z is the actual, velocity dependent, vertical wavenumber and zactual

a is the actual depth
of the turning point of the planewave. Since the velocity of the actual medium is assumed to be
unkown, this relationship is written in terms of the reference velocity as

ωτa = kzza (10)

where kz is the vertical wavenumber of the planewave in the reference medium, kz =
√

ω
c0
− ks +

√
ω
c0
− kg, and za is the pseudo-depth of the turning point. This implicit operation in the algorithm

is performed by denoting b1(ks, kg, ω) = b1(ks, kg, kz) with the latter having the expression

b1(ks, kg, kz) =
∑

a

R̃′′
ae
−ikzza . (11)

The next step is to Inverse Fourier Transform over the reference kz hence obtaining

b1(ks, kg, z) =

∞∫

−∞
eikzzb1(ks, kg, kz)dkz. (12)
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c0

c1

c2

321

Figure 4: The sub-events of an internal multiple: the green, blue and red are arrivals in the data which satisfy the
lower-higher-lower relationship in pseudo-depths z. The algorithm will construct the phase of the internal multiple
shown in black by adding the phases of the green and the blue primaries and subtract the one of the red primary.

Putting together equations (11) and (12)) we find

b1(ks, kg, z) =
∑

a

∞∫

−∞
R̃′′

ae
ikz(z−za)dkz (13)

which represents a sum of delta-like events placed at pseudo-depths za and hence the b1 from
the last equation is actually b1(ks, kg, za). This last step can also be interpreted as a downward
continuation on both source and receiver sides, with the reference velocity c0, and an imaging with
τ = 0, or, in other words, an un-collapsed F-K migration (see e.g. (15) and (16)). A discussion of
differences in imaging with τ and with t was given by Nita and Weglein (12).

Each internal multiple is constructed by considering three effective data sets b1 and searching, in
the horizontal-wavenumber–pseudo-depth domain, for three arrivals which satisfy the lower-higher-
lower relationship in their pseudo-depths, i.e. z1 > z2 < z3, (see Figure 4 for an example of three
such primary events). Having found such three arrivals in the data, the algorithm combines their
amplitudes and phases to construct a multiple by adding the phases of the two pseudo-deeper
events and subtracting the one of the pseudo-shallower ones and by multiplying their amplitudes.
One can then see (see e.g. (20)) that the time of arrival of an internal multiple is exactly predicted
and its amplitude is well approximated by this procedure.

As pointed out in the first section, the lower-higher-lower restriction was inferred from the analogy
with the forward scattering series description of internal multiples: the first order approximation
to an internal multiple (which occurs in the third term of the series) is built up by summing
over all scattering interactions which satisfy a lower-higher-lower relationship in actual depth.
The assumption that this relationship is preserved in going from actual depth to pseudo-depth is
called “the pseudo-depth monotonicity condition”. (Recall that a monotonic function f(x) satisfies
f(x1) < f(x2) ⇐⇒ x1 < x2, see also Figure 5; here, we regard the pseudo-depth as a function of
actual depth). Notice that the lower-higher-lower relationship in pseudo-depth can be translated,
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x1

x1f(  )

x2f(   )

x2

f(x)

x

Figure 5: A monotonic function.

from equation (10), in a similar longer-shorter-longer relationship in the vertical or intercept time
of the three events. Accordingly, the pseudo-depth monotonicity is also translated in a vertical time
monotonicity condition. Notice that this is different from the total time monotonicity assumed by
the algorithm introduced by ten Kroode (17). The latter is employing asymptotic evaluations of
certain Fourier integrals which result in an algorithm in the space domain, having a ray theory
assumption and the less inclusive total time monotonicity requirement. The justification for this
approach was the attempt to attenuate a first order approximation to an internal multiple built by
the forward scattering series. In contrast, the original algorithm is aimed at predicting and attenu-
ating the actual multiples in the data and hence it takes into consideration the full wavefield, with
no asymptotic compromises, and results in a more inclusive vertical time monotonicity condition.
In Section 5 we discuss a 2D example in which the geometry of the subsurface leads to the existence
of a multiple which satisfies the pseudo-depth/vertical-time but not the total time monotonicity
condition.

In the next section we analyze a simple 1.5D example and show analytically how it predicts internal
multiples by putting together amplitude and phase information from arrivals in the data satisfying
the above condition. During this analysis we also show that the internal multiples with headwaves
sub-events are attenuated by the algorithm.

Attenuation of internal multiples with headwaves sub-events: a
1.5D example

The model in this experiment is a 2D vertically varying medium. We consider one of the simplest
cases which allow the existence of internal multiples, namely one layer between two semi-infinite
half-spaces separated by horizontal interfaces (see Figure 6). The velocity only varies across the
interfaces located at z = za and z = zb and has the values c0, c1 and c2 respectively. The sources
and receivers are located at the same depth z = 0. The data for such a model is given in the
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za

zbz

x z=0 MS

Figure 6: The model for the 1.5D example.

frequency ω domain by (see e.g. (1))

D(xh, 0;ω) =
1
2π

∞∫

−∞
dkh

R01 + T01R12T10e
iν1(zb−za) + . . .

iqs
eikhxheikzza (14)

where kz = qg + qs, kh = kg + ks, xh =
xg − xs

2
and ν1 = q1g + q1s. The reflection and transmission

coefficients at the corresponding interfaces R01, T01, R12 and T10 are all functions of kh and ω. Only
the primaries from the top and the bottom interfaces are written out explicitly in this equation;
the dots “ . . . ” stand for other multiple arrivals. For simplicity we will drop the writing of the dots
for the rest of this example; this will effect in the prediction of the first order internal multiple only.

Notice that the expression (14) represents both pre-critical and post-critical arrivals, as well as, for
large offsets, headwaves along both interfaces. For a discussion of how to obtain the headwaves
solutions from integrating Equation (14) see e.g. Aki and Richards (1) Chapter 6. The first order
internal multiple that we seek to predict has the expression

IM1st
actual(xh, 0;ω) =

1
2π

∞∫

−∞
dkh

T01R
2
12T10R10e

2iν1(zb−za)

iqs
eikhxheikzza . (15)

This analytic formula contains both small and large offsets first order internal multiples arrivals
including the multiples containing headwaves along the second interface as sub-events.

Fourier transforming the data given by equation (14) over xh and xm we find

D(kh, 0;ω) =
R01 + T01R12T10e

−iν1(zb−za)

iqs
e−ikzzaδ(kg − ks). (16)

Then b1(kh, 0;ω) = iqsD(kh, 0;ω) is

b1(kh, 0;ω) =
[
R01 + T01R12T10e

−iν1(zb−za)
]
e−ikzzaδ(kg − ks). (17)

or
b1(kh, 0;ω) =

[
R01e

−ikzza + R′
12e

−iν1(zb−za)e−ikzza
]
δ(kg − ks) (18)

111



Internal multiple attenuation: algorithm analysis MOSRP04

za

zb

qs

ks

c
0

ω/

θ

(a) The geometry of the first
primary in the data.
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(b) The geometry of the second primary in
the data.

Figure 7: Geometrical representation of the two primaries.

where, for simplicity, we denoted T01R12T10 = R′
12.

For the first primary we can write (see Figure 7(a)) cos θ =
qs

ω/c0
which implies

qs =
ω

c0
cos θ (19)

or, noticing that
c0

cos θ
= c1

v, the vertical speed in the first medium,

qsza =
ω

c0
za cos θ = ω

τ1

2
(20)

where τ1 represents the intercept or vertical time of the first event. Similarly, on the receiver side
we have

qgza = ω
τ1

2
. (21)

Summing the last two equations we find for the first primary arrival (compare with equation 10)

kzza = ωτ1 (22)

where we emphasize again that on the left hand side of the equation is the reference kz and the
pseudo-depth, which in this case coincides with the actual depth of of the reflector, za and on the
right hand side we have the phase information contained in the recorded data. For the second
event we can find, as before, that, for the portion propagating through the space in between the
measurement surface and the depth za, we have

kzza = ωτ1, (23)

where τ1 is the vertical time through the first medium. For the part that is propagating through
the second medium we can write cosϕ =

q1s

ω/c1
which implies

qs1 =
ω

c1
cosϕ, (24)
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or, noticing that
c1

cosϕ
= c2

v, the vertical speed in the layer,

q1s(zb − za) =
ω

c1
(zb − za)cosϕ = ω

τ2

2
(25)

where τ2 is the vertical time through the layer for this event. Similarly, on the receiver side we have

q1g(zb − za) = ω
τ2

2
. (26)

Summing the last two equations we find

ν1(zb − za) = ωτ2. (27)

Summarizing, for the second primary we found from equations (23) and (27)

kzza + ν1(zb − za) = ωτ2 (28)

where τ2 is the total vertical time for the second event.

Since the velocity of the second medium is not known, we can write ωτ2 in terms of c0 only as
follows (see Equation (10)

ωτ2 = kzz
′
b (29)

where z′b is a pseudo-depth which can be calculated in terms of the vertical time τ2 and the vertical
speed of the first medium. With these remarks, the expression (18) for b1 becomes

b1(kh, 0;ω) =
[
R01e

−ikzza + R′
12e

−ikzz′b
]
δ(kg − ks) (30)

To calculate b1(kh, z) we first downward continue/extrapolate,

b1(kh, z;ω) =
[
R01e

ikz(z−za) + R′
12e

ikz(z−z′b)
]
δ(kg − ks), (31)

and then integrate over kz (imaging) to obtain

b1(kh, z) =

∞∫

−∞
dkzb1(kh, kz; ω). (32)

Notice that the reflection and transmission coefficients in the expression (31) are functions of ω
and hence functions of kz. Explicitly,

R01(kh, ω) =

√
4ω2

c2
0

− k2
h −

√
4ω2

c2
1

− k2
h

√
4ω2

c2
0

− k2
h +

√
4ω2

c2
1

− k2
h

. (33)

The integration over kz in (32) hence amounts to an inverse Fourier transform of R01 and R′
12 over

kz. This Fourier transform is difficult to write as an analytic result and hence the example can no
longer continue in the (kh, ω) domain.
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Figure 8: The mapping (kh, ω) to (p, ω)

The imaging of the data can also be achieved in the (p, ω) domain with better analytical results and
more meaningful amplitude analysis (see Bruin et al (1990)). To this end we map the data from
the (kh, ω) to (p, ω) domain. This mapping has been studied extensively by Bracewell (1956) and
Bracewell and Riddle (1967). It mainly consists in reading the data along the lines going through
the origin of the (kh, ω) coordinate system instead of the original (kh, ω) grid (see Figure 8). Notice
that, if this mapping is performed, the reflection and the transmission coefficients are no longer
dependent of the frequency ω or kz. Explicitly, in the formula (33) for R01 we can factor ω and
then divide by it and so the expression becomes

R01(p) =

√
4
c2
0

− p2 −
√

4
c2
1

− p2

√
4
c2
0

− p2 +

√
4
c2
1

− p2

. (34)

Similarly it can be shown that R′
12 is mapped to a function of p only.

In this new coordinate system the imaging step reads

b1(p, z) =

∞∫

−∞
dkzb1(p, kz; ω) =

[
R01(p)δ(z − za) + R′

12(p)δ(z − z′b)
]
δ(kg − ks). (35)

Numerical results comparing imaging in (kh, ω) and (p, ω) were shown and discussed in Bruin et
al. (1990). The imaged data written in equation (35) is next taken through the internal multiple
algorithm described in equation (3).

Given the data in the form (35), the algorithm performs similarly to the 1D normal incidence case.
In the following, we are denoting by p1, p2 and p3 the horizontal slownesses associated with kg +k1,
k2 + ks and kg + ks respectively. The horizontal slowness associated with ks + kg is also denoted by
p. The four slownesses defined above are not independent, in fact we have that p3 = (p1 + p2)− p.
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The inner most integral towards calculating b3 in the internal multiple algorithm is

∞∫

z′2+ε1

dz′3e
ikzz′3

[
R01(p2)δ(z′3 − za) + R′

12(p2)δ(z′3 − z′b)
]
δ(k2 − ks) (36)

=

∞∫

−∞
dz′3H(z′3 − (z′2 + ε1))eikzz′3

[
R01(p2)δ(z′3 − za) + R′

12(p2)δ(z′3 − z′b)
]
δ(k2 − ks)

=
[
H(za − (z′2 + ε1))R01(p2)eikzza + H(z′b − (z′2 + ε1))R′

12(p2)eikzz′b
]
δ(k2 − ks).

The second integral in the algorithm is

z′1−ε2∫

−∞
dz′3e

ikzz′2
[
R01(p3)δ(z′2 − za) + R′

12(p3)δ(z′2 − z′b)
]
δ(k1 − k2) (37)

×
[
H(za − (z′2 + ε1))R01(p2)eikzza + H(z′b − (z′2 + ε1))R′

12(p2)eikzz′b
]
δ(k2 − ks)

= R01(p2)R01(p3)H(za − (z′1 + ε2))H(za − (za + ε1))eikzzae−ikzzaδ(k1 − k2)δ(k2 − ks)

+ R01(p2)R′
12(p3)H((z′1 − ε2)− za)H(z′b − (za + ε1))eikzz′be−ikzzaδ(k1 − k2)δ(k2 − ks)

+ R′
12(p2)R01(p3)H((z′1 − ε2)− z′b)H(za − (z′b + ε1))eikzzae−ikzz′bδ(k1 − k2)δ(k2 − ks)

+ R′
12(p2)R′

12(p3)H((z′1 − ε2)− z′b)H(z′b − (z′b + ε1))eikzz′be−ikzz′bδ(k1 − k2)δ(k2 − ks)

where all the underlined terms are zero.

The last integral over depth z in the calculation of b3 is

∞∫

−∞
eikzz′1

[
R01(p1)δ(z′1 − za) + R′

12(p1)δ(z′1 − z′b)
]
δ(kg − k1) (38)

× R01(p2)R′
12(p3)H((z′1 − ε2)− za)H(z′b − (za + ε1))eikzz′be−ikzzaδ(k1 − k2)δ(k2 − ks)

= R01(p1)R01(p2)R′
12(p3)H(−ε2)H(z′b − (za + ε1))eikzzaδ(kg − k1)δ(k1 − k2)δ(k2 − ks)

+ R′
12(p1)R01(p2)R′

12(p3)eikz(2z′b−za)H(z′b − (za + ε2))H(z′b − (za + ε1))δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

= R′
12(p1)R01(p2)R′

12(p3)e2ikzz′be−ikzzaδ(kg − k1)δ(k1 − k2)δ(k2 − ks)

where we have used the fact that the underlined term is zero and that the last two Heaviside
functions are identically equal to 1.

The result for the b3, and hence the predicted first order internal multiple, is

b3(p, ω) = e2ikzz′be−ikzza

∞∫

−∞
dk1

∞∫

−∞
dk2R

′
12(p1)R01(p2)R′

12(p3)δ(kg − k1)δ(k1 − k2)δ(k2 − ks), (39)

or, after evaluating the integrals and using the relationship between p1, p2, p3 and p,

b3(p, ω) = R′2
12(p)R01(p)δ(kg − ks)e2ikzz′be−ikzza . (40)
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Figure 9: A 2D earth model with an internal multiple satisfying the time monotonicity in the vertical time but not
in the total travel time

Recalling that R′2
12(p) = T01(p)R2(p)T10(p) we find the final result to be

b3(p, ω) = T 2
01(p)R2

2(p)T 2
10(p)R01(p)δ(kg − ks)e2ikzz′be−ikzza (41)

consistent with the 1D normal incident result of (20). Integrating over kh gives the prediction of
the first order internal multiple in space frequency domain

IM1st
predicted(xh, 0;ω) =

1
2π

∞∫

−∞
dkh

T 2
01R

2
12T

2
10R10e

2iν1(zb−za)

iqs
eikhxheikzza . (42)

Comparing this expression with Equation (15) for the actual multiple we see that the predicted
multiple has the correct total time and a well approximated amplitude. The amplitude of the
predicted multiple in the p-domain is within a T01(p)T10(p) factor, a factor which is always close
to, but always less than, 1. An integration over the horizontal wavenumber kh will average these
amplitudes and will result in the predicted amplitude in the space domain which again is going to
be lower than, but close to, the actual amplitude of the internal multiple. In addition, since the
phase and amplitude construction is performed in the plane waves domain, the internal multiples
with headwaves sub-events are also predicted by the algorithm.

In the next section we will further discuss the lower-higher-lower relationship between the pseudo-
depths of the sub-events and the similarities and differences of this relationship in total travel time
and vertical or intercept time.

Vertical time and total travel time monotonicity: a 2D example

Consider the earth model shown in Figure 9. For simplicity we assume that only the density ρ varies
at the interface and it has the value ρ0 in the reference medium and ρ1 in the actual medium. The
velocity is constant c0. The actual internal multiple is shown in black and the sub-events composing
the multiple are shown in green, blue and red. First, notice that the total traveltime of the shallower
reflection (the red event) is bigger than both deeper reflection (green and blue) due to the large
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Figure 10: A 2D earth model with an internal multiple satisfying the time monotonicity in the vertical time but not
in the total travel time

offsets needed to record such an event. This implies that the longer-shorter-longer relationship is
not satisfied by these particular sub-events in the total traveltime.

Next we calculate the vertical times for individual sub-events. The vertical time for the red event
along the left leg is (see Figure 10)

τ1
red = z1

cos θin

c0
(43)

and along the right leg is

τ2
red = z1

cos θout

c0
. (44)

Summing the two legs we find the total vertical time along the red event to be

τred =
z1

c0
(cos θin + cos θout) . (45)

Similarly, for the green event we have

τgreen =
z2

c0
(cosφin + cosφout) . (46)

Since the velocity is constant, θout = φout; we also have that φin < θin, and hence cosφin > cos θin,
and z2 > z1 which results in

τgreen > τred. (47)

It is not difficult to see that similarly, for this example, we have

τblue > τred (48)

where τblue is the vertical time of the blue primary in Figure 10.

The conclusion is that for this model and particular internal multiple, the longer-shorter-longer
relationship is satisfied by the vertical or intercept times of the three subevents but not by their
total traveltimes. According to equation (10), this relation translates into the lower-higher-lower
relationship between the pseudo-depths of the sub-events and hence the internal multiple depicted
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Figure 11: A 2D earth model with an internal multiple containing sub-events which do not satisfy the time mono-
tonicity in either total traveltime or vertical time.

in Figure 9 will be predicted by the inverse scattering internal multiple attenuation algorithm in
Equation (3).

In the next section we discuss an earth model and a particular internal multiple in which the
longer-shorter-longer relationship in vertical and total travel time is not satisfied.

Breaking the time monotonicity: a 2D example

Consider the earth model shown in Figure 11 where c0 < c1. A high velocity zone, in which the
propagation speed c3 is much higher than c0, intersects one leg of the internal multiple and hence
one leg of one of the sub-events (the blue primary in Figure 11). Due to this high velocity zone
and the fact that c0 < c1, one can easily imagine a situation in which both the total and the
vertical time of the blue primary are shorter than the total and vertical times respectively of the
red primary. In this case the lower-higher-lower relationship between the pseudo-depths of the sub-
events is not satisfied and hence the internal multiple shown in the picture will not be predicted.
The monotonicity is in consequence broken, since even though the actual depths still satisfy a
lower-higher-lower relationship, the pseudo-depths, vertical times or total times of the sub-events
do not.

To better understand the multiples which do not satisfy the pseudo-depth/vertical-time mono-
tonicity condition and to expand the algorithm to address them, one has to study their creation
in the forward scattering series. As indicated by Matson (10) (11) and Weglein et al. (20) the
lower-higher-lower relationship in pseudo-depth z was pointed to by the forward scattering series:
the first order approximation to an internal multiple is constructed in the forward scattering series
from interactions with point scatterers which satisfy the lower-higher-lower relationship in actual
depth. It would be interesting to analyze how a multiple that breaks the monotonicity assumption
is constructed by the forward series and to determine if an analogy between the forward and the
inverse process would be useful to expand the algorithm to address these kind of events. This
particular issue and others will be the subject of future research.
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Conclusions

In this paper we presented an analytic analysis of the inverse scattering internal multiple attenuation
algorithm for multi dimensional media. We particularly focused on the mechanism of predicting
amplitude and phase properties of an interbed multiple. We have presented the first prestack
analysis with analytical data which shows the ability of the algorithm to exactly predict the time
and well approximate the amplitude of internal multiples, including the ones with headwaves sub-
events. We have discussed in detail the pseudo-depth/vertical-time monotonicity condition and
compared it with a similar total traveltime relation. Furthermore, we showed that this restriction
on the sub-events can be too strong and could prevent the prediction of some complex internal
multiples.

This research is an important step forward in better understanding the inverse scattering series and
the internal multiple attenuation algorithm derived from it. The analytic analysis presented, targets
internal multiples which occur in complex multi-dimensional media. Having a better understanding
of the structure and definition of such internal multiples opens up new possibilities of identifying,
predicting and subtracting them from the collected data. The inverse scattering series is presently
the only tool that can achieve these objectives without any knowledge about the actual medium.
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[14] A. C. Raḿırez and A. B. Weglein (2005),

[15] R. Stolt (1978), Migration by Fourier transform, Geophysics, 43, pp. 23-48.

[16] R. Stolt and A. B. Weglein (1985), Migration and inversion of seismic data, Geophysics,
50, pp. 2458-2472.

[17] A. P. E. ten Kroode (2002), Prediction of internal multiples, Wave Motion, 35, pp. 315-338.

[18] S. Treitel, P. R. Gutowski and D. E. Wagner (1982), Plane-wave decomposition of
seismograms, Geophysics, Vol. 47, No. 10, pp. 1374-1401.

[19] A. B. Weglein, F. A. Gasparotto, P. M. Carvalho, R. H. Stolt (1997), An inverse
scattering series method for attenuating multiples in seismic reflection data, Geophysics, 62,
pp. 1975-1989.

[20] A. B. Weglein, F. V. Araujo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R.
Coates, D. Corrigan, D. J. Foster, S. A. Shaw, H. Zhang (2003), Inverse scattering
series and seismic exploration, Topical Review Inverse Problems, 19, pp. R27-R83.

[21] A. B. Weglein, W. Dragoset (2005), Internal Multiples, SEG Reprint Volume.

120



Progressing the analysis of the phase and amplitude prediction
properties of the inverse scattering internal multiple attenuation
algorithm

Adriana Citlali Ramı́rez and Arthur B. Weglein

Abstract

Predicting and removing internal multiples is an important and long-standing challenge
in exploration seismology. The inverse scattering theory based internal multiple attenuation
algorithm (14) (1) effectively reduces internal multiples with documented successful application
to field datasets. Stated succinctly: the inverse scattering internal multiple attenuator predicts
both time and amplitude. The amplitude prediction is approximately equal to and always
less than the actual value. The internal multiple attenuator is the first term in an internal
multiple removal series, which is, in turn, a subseries of the entire inverse scattering series. The
inverse scattering series, and all of its task specific subseries, accomplish their objectives without
knowing or determining the velocity or any properties beneath the measurement surface. This
characteristic makes it ideal for addressing one of the current biggest challenges in exploration
seismology: removing multiples and locating and identifying targets when the subsurface geology
is complex and ill-defined.

Using an analytic data example, this paper extends an earlier analysis (17) to determine
the efficacy of the attenuator towards its stated objective, i.e. precisely how effective is this
temporal prediction and amplitude reduction process. The timing of the algorithm is perfect
and (within the confines of the 1D layered earth normal incidence wave analysis presented here)
we demonstrate that the difference between complete elimination and the attenuation, that the
algorithm provides, resides in the attenuator having extra powers of transmission coefficients
only for all the interfaces down to and including the depth of the shallowest downward reflection.
The difference between the algorithm’s amplitude prediction and the amplitude of the actual
internal multiple is totally independent of the rest of the path, velocities and earth parameters
beneath that shallowest reflector that the internal multiple has traveled. This property helps
explain the high degree of effectiveness and impact observed in practical application of these
algorithms on field data, especially under highly complex subsurface conditions (9) (17) (12).

The forward scattering series, starting with no a priori subsurface information, requires
an infinite series to predict either the time and/or the amplitude of any internal multiple. In
marked contrast, the inverse scattering subseries that removes internal multiples of a given order
predicts the precise time and well approximates the amplitude of all internal multiples of that
order with a single first term, called the attenuator. This remarkable difference is the reason the
single term attenuator has such a practical and significant contribution. The most important
aspect of predicting events is determining the arrival time. Having the precise amplitude but
having the wrong arrival time is of little practical value. Having the perfect time and a well
approximated amplitude is the hallmark of a useful event prediction method.

Introduction and background

In marine seismic exploration, towed streamer data is acquired with a seismic source and receivers
located within the water column. For the purposes and objectives of exploration seismology, it
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is convenient to catalog and separate the recorded data events into different categories (17). The
first category consists of the direct arrival and the wave that goes from the source up to the free
surface, reflects from that surface and then propagates directly to the receiver. Those latter two
events have not experienced the subsurface. All of the other categories of events have experienced
the earth.

Next, the events that experience the earth are further separated depending on whether they began as
a wave moving upwards or downwards leaving the source or ended traveling upwards or downwards
when they arrive at the receiver. Those moving upwards from the source are called source ghosts,
those moving downwards when they arrive at the receiver are receiver ghosts, and those that have
both properties are source receiver ghosts. All the ghost events are separated from the unghosted
events, the latter originating as downgoing at the source and ending as upgoing at the receiver.
Deghosted events are further catalogued by the number and location of their reflections. Deghosted
events with one upward reflection are called primaries; events with more than one upward reflection
are called multiples. Multiples are further divided into events that have experienced the free surface,
and those that have not: The former are called free surface multiples and the latter are called
internal multiples. For our purposes, the order of a free surface multiple is defined by the number
of times it has experienced a downward reflection from the free surface, whereas, the order of
an internal multiple is defined to be the number of downward reflections it experiences, without
reference to the location of the downward reflection.

It is convenient, reasonable and standard practice to seek to remove all multiples from seismic
reflection data and to then use the primaries to determine the location and properties of the single
upward reflector they have experienced. Hence, the removal of multiples is an essential step in the
seismic processing chain. Removing multiples is not a new idea, and there are many methods that
have been developed that are often effective –an overview of multiple removal can be found in,
e.g. Verschuur (1991)(13), Berkhout et al (1997)(2), Weglein (1999)(15) and Weglein and Dragoset
(2005)(18). However, either deep water and/or a complex multidimensional earth can wreak havoc
on many procedures that either assume the earth is 1D, or that a reasonable velocity estimate is
obtainable. The inverse scattering series processing methods can accommodate a complex multi-
dimensional earth (14), without requiring any subsurface information, including velocity; those
distinct algorithms for free surface and internal multiples were the first comprehensive methods to
address that challenge, and remain the high-water mark of effectiveness.

A review of the evolution and development of these inverse scattering series concepts and practical
algorithms, with synthetic and field data examples can be found in Weglein et al (2003)(17). The
objectives of this paper are to progress the study of amplitude prediction of the inverse scattering
internal multiple attenuation algorithm, both to further clarify its properties and to suggest a path
for future increased algorithmic capability towards addressing the challenge of removing multiples.
The demand for added efficacy for multiple attenuation, and going beyond attenuation, is a pressing
current need especially under complex geologic circumstances where adequate velocity information
is unobtainable with our most effective velocity methods. We begin with a brief review of scattering
theory, forward and inverse scattering series, and the steps required, e.g., to derive an internal
multiple algorithm, or algorithms performing other seismic processing objectives, from the inverse
scattering series.
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Inverse Scattering Series

Scattering theory describes how a perturbation in a medium’s properties relates to differences
in the resulting wave field. The brief background presented here to scattering theory, forward
scattering series, and inverse scattering series, and concepts for multiples and their attenuation,
follows the development provided in Weglein et al (1997)(14), and (2003)(17), wherein further
detail, contributors and references can be found.

For our purposes in exploration seismology, we choose the unperturbed medium to be a chosen
reference medium and consider a perturbation that alters the reference into the actual medium,
the earth. Let L0 and L be the differential wave operators governing propagation in the reference
and actual medium, and G0 and G the corresponding Green’s functions, respectively:

LG = δ,

L0G0 = δ. (1)

We define the perturbation operator as V = L0 −L and the difference field, Ψs, as G−G0. These
quantities are related by the Lippmann Schwinger equation:

G = G0 + G0V G. (2)

The Lippmann Schwinger equation can be expressed as a forward series for G−G0 in terms of G0

and V and this is the forward scattering series. It is a series in orders of V :

G−G0 = G0V G0 + G0V G0V G0 + G0V G0V G0V G0 + · · · . (3)

The inverse of this forward scattering series is the inverse scattering series, for V in orders of the
measured values of the scattered field, G−G0:

V = ΣiVi = V1 + V2 + V3 + · · · . (4)

The equations for V1, V2, etc. are:

G0V1G0 = G−G0 = D

G0V2G0 = −G0V1G0V1G0

G0V3G0 = −G0V1G0V1G0V1G0 −G0V1G0V2 −G0V2G0V1

... (5)

where D represents the measured scattered field, D = (Ψs)m, and the subscript m indicates mea-
sured values. The forward series creates the perturbed wavefield from the reference propagator, G0,
and the medium perturbation, V . The inverse series constructs V from G0 and measured values of
G−G0.

The inversion process –determination of the structural image of the subsurface including its physical
properties- can be viewed as consisting of four intermediate steps and uncoupled tasks: (1) free-
surface multiple removal, (2) internal multiple removal, (3) spatial location of reflectors and (4)
identification of how medium properties change across reflectors. Subseries within the inverse
scattering series performing these four tasks have been identified with two immediate advantages:
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favorable convergence properties as well as the ability to benefit from completed earlier steps to
improve the chances of subsequent tasks succeeding. The strategy is to accomplish one task at a
time, and then restart the problem as if the just completed task never existed. The tasks associated
with inversion are each carried out by the task specific subseries directly in terms of the measured
scattered field, D, and the reference medium Green’s function, G0.

Internal Multiple Attenuation

Several steps of problem definition, forward concept and inverse analog were needed in coming to
identify the part of the inverse scattering series that provides an activity, and subsequent algorithm,
that attenuates all internal multiples of a given order. We will briefly discuss those defining issues
further in this paper. Within the broad confines of what those definitions, constructs and concepts
capture, an internal multiple algorithm is presented in Araújo (1994)(1), Weglein et al (1997)(14)
and (2003)(17). That algorithm for a 2D earth is:

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (6)

b3(kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+qs)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (7)

where ω represents the temporal frequency, c0 is the acoustic velocity of water; kg and ks are the
horizontal wavenumbers corresponding to receiver and source coordinates: xg and xs, respectively;
the 2-D wavevectors: kg = (kg,−qg) and ks = (ks, qs) are constrained by |kg| = |ks| = ω

c0
; the

vertical wavenumbers are qg = sgn(ω)
√

( ω
c0

)2 − kg
2 and qs = sgn(ω)

√
( ω

c0
)2 − ks

2, and εi, i = 1, 2
is a small positive parameter chosen to insure that the relations z1 > z2 and z3 > z2 are satisfied.

In Eqs.(6) and (7), the quantity b1(kg, ks, qg + qs) is defined as a source obliquity factor times the
2D measured values of the scattered field, (Ψs)m = D, and the variable z is the Fourier conjugate
to the sum of the vertical wavenumbers, kz = −(qg + qs).

That single algorithm automatically accommodates all earth model types that satisfy the convo-
lutional model(17), and neither requires nor determines any earth material properties (5)(9) (12).
The 1D earth and normal incidence wave version of that multidimensional algorithm is

b1(k) = D(ω), (8)

b3(k) =
∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ z1−ε2

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε1

dz3e
ikz3b1(z3), (9)

where k = 2 ω
c0

. In the 1D normal incidence algorithm, Eq. (9), we will refer to kz simply as
k. This 1D version is convenient for analyzing the effectiveness of the algorithm where the data
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is analytic and the algorithm’s integrals can be analytically evaluated, hence completely avoiding
any numerical error in either the data quality or the algorithm’s degradation due to numerical
integration errors. Furthermore, the analytic result precisely attributes the underlying strengths
and limitations to the intrinsic character of the method, given exact data as input, and a flawless
execution of the algorithm.

In the next section we first present the results of an earlier analysis in Weglein et al (2003)(17), in
a 1D model with two interfaces, to determine the effectiveness of the attenuation algorithm. We
then progress the insight and understanding of the internal multiple attenuator by extending the
analysis to first three and then an arbitrary number of interfaces. These analytic examples further
illustrate the ability of the inverse scattering algorithm to attenuate first order internal multiples
without knowing or determining the velocity or any properties inside the medium.

Internal Multiple Amplitude Prediction

z 01

z 12

c0

c1

c2

R1

R2

T01 T10

z

Figure 1: One dimensional model with two interfaces.

The multiple removal algorithm derived using the inverse series has the unique property that it
expects the recorded seismic data, without both the effects of the free surface and the source
wavelet, as input. To demonstrate the inner workings of the algorithm and further define its
level of effectiveness, Weglein et al (2003)(17) considered the simplest model that produces data
with internal multiples and could be taken analytically through Eq.(7). It is a 1D variable velocity,
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constant density, acoustic model with two interfaces shown in Fig.(1): the data used in this example
consists of two primaries created by a normal incident spike wave δ(t− z

c ):

D(t) = R1δ(t− t1) + T01R2T10δ(t− t2) + · · · , (10)

where t1, t2 are the two way travel times of the primaries from the two reflectors, R1 and R2

are the reflection coefficients from the interfaces at z01 and z12 respectively, and T01 and T10 are
the transmission coefficients when going down and up through the interface at z01. Performing a
temporal Fourier transform of D(t), and using k = 2 ω

c0
, gives:

D(ω) = R1e
i( 2ω

c0
)(

c0t1
2

) + T01R2T10e
i( 2ω

c0
)(

c0t2
2

) + · · · , (11)

and

b1(k) = R1e
ikz1 + T01R2T10e

ikz2 + · · · . (12)

The −2iqs factor in b1(kg, ks, qg + qs) –Eq.(6)- is a result of a point source experiment; when the
incident wave is a spike wave that factor is not required. The pseudo-depths z1 and z2 are defined
in the reference medium as:

z1 ≡ c0t1
2

,

z2 ≡ c0t2
2

. (13)

The substitution of b1(k) into Eq.(9) gives the following prediction of a first order internal multiple:

b3(k) = R1R
2
2T

2
01T

2
10e

2ikz2e−ikz1 , (14)

which in the time domain is:

b3(t) = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)). (15)

The result predicts a first order internal multiple with the exact time and whose amplitude is the
precise amplitude (−T01R2R1R2T10), with opposite sign, multiplied by the transmission coefficients
(T01T10) of the first interface. The difference between elimination and attenuation is determined
by 1− T01T10 which is a small number even when R1 corresponds to a large but realistic reflection
coefficient. That T01T10 is less than one reflects the fact that the method is an attenuator, delivering
a reduction of the first order internal multiple amplitude.

We now extend this analysis to several reflectors to determine a clearer and deeper understanding
of the algorithm, taking you step by step on the same journey that data would take. The earth
model is illustrated in Fig.(2); it consists of a reference whole space with velocity c0 and three
layers with respective wavespeeds of c1, c2, c3 and layer boundaries at z01, z12 and z23. The source
and receiver are located at depth z = 0.

The first term in the algorithm is the data itself, D. In this example, the data is assumed to be
generated by a normal incident spike wave δ(t−z/c) in the 1D medium of this three reflector model
(Fig. (2)). The data, D(t) is:

D(t) =R1δ(t− t1) + T01R2T10δ(t− t2) + T12T01R3T10T21δ(t− t3) + · · · , (16)
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Figure 2: 1D layered medium.

T12 and T21 are the transmission coefficients when going down and up, respectively, through the
interface at z12.

We use the definitions: R′
2 = T01R2T10 and R′

3 = T01T12R3T21T10, and apply a temporal Fourier
transform to D(t):

D(ω) =
∫ ∞

−∞
dtD(t)eiωt

= R1e
iωt1 + R′

2e
iωt2 + R′

3e
iωt3 , (17)

We now introduce the wavenumber k = 2 ω
c0

and the reference medium pseudodepths zi = c0ti
2 :

b1(k) = D(ω) = R1e
ikz1 + R′

2e
ikz2 + R′

3e
ikz3 ,

b1(z) =
∫ ∞

−∞
e−ikzb1(k) dk

= R1δ(z − z1) + R′
2δ(z − z2) + R′

3δ(z − z3). (18)

We substitute the data from Eq.(18) into b3, and evaluate the integrals analytically. The first
integral in Eq.(9) towards computing b3 is:

I3(k) =
∫ ∞

z′+ε1

dz′′eikz′′(R1δ(z′′ − z1) + R′
2δ(z

′′ − z2) + R′
3δ(z

′′ − z3))

= R1e
ikz1H(z1 − (z′ + ε1)) + R′

2e
ikz2H(z2 − (z′ + ε1))

+ R′
3e

ikz3H(z3 − (z′ + ε1)), (19)
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where H is the Heaviside function. The second integral in Eq.(9) is:
∫ z−ε2

−∞
dz′e−ikz′(R1δ(z′ − z1) + R′

2δ(z
′ − z2) + R′

3δ(z
′ − z3) + · · · )(I3(k))

= R1R
′
2e

ikz2H(z2 − (z1 + ε1))H((z − ε2)− z1)e−ikz1

+ R1R
′
3e

ikz3H(z3 − (z1 + ε1))H((z − ε2)− z1)e−ikz1

+ R′
2R

′
3e

ikz3H(z3− (z2 + ε1))H((z − ε2)− z3)e−ikz3 , (20)

and the last integral gives:

b3(k) = R1R
′
2
2
e2ikz2e−ikz1H(z2 − z1 − ε1)H(z2 − ε2 − z1)

+ R1R
′
2R

′
3e

ikz2eikz3e−ikz1H(z3 − z1 − ε1)H(z2 − ε2 − z1)

+ R1R
′
2R

′
3e

ikz2eikz3e−ikz1H(z2 − z1 − ε1)H(z3 − ε2 − z1)

+ R1R
′
3
2
e2ikz3e−ikz1H(z3 − z2 − ε1)H(z3 − ε2 − z1)

+ R2R
′
3
2
e2ikz3e−ikz2H(z3 − z2 − ε1)H(z3 − ε2 − z2). (21)

An inverse Fourier transform takes b3(k) back to the time domain, and we obtain:

b3(t) = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)) + 2R1R2R3T

2
01T

2
10T12T21δ(t− (t2 + t3 − t1))

+ R1R
2
3T

2
01T

2
12T

2
21T

2
10δ(t− (2t3 − t1)) + R2R

2
3T

3
01T

3
10T

2
12T

2
21δ(t− (2t3 − t2)). (22)

*
Source Receiver

 z

R1

T01

T10

Z 01

 Z 12

 Z 23

R2 R2

Figure 3: First order internal multiple.

The first term in Eq.(22), R1R
2
2T

2
01T

2
10δ(t − (2t2 − t1)), agrees with the result of Eq.(15) for the

internal multiple example illustrated in Fig.(3). The prediction has the correct time, and it is
attenuated by the transmission coefficients T01T10. The same conclusion holds for the second and
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third term in Eq.(22). These first three terms on the right hand side of Eq. (22) share the same
overabundance of transmission coefficients in the prediction and they all correspond to first order
internal multiples with their downward reflection at the same interface (z01).

*
Source Receiver

 z

R2

T01

T10

Z 01

 Z 12

 Z 23R3 R3

Figure 4: A first order internal multiple with its downward reflection at z12.

The last term, R2R
2
3T

3
01T

3
10T

2
12T

2
21δ(t − (2t3 − t2)), has the correct time of the first order internal

multiple having, its downward reflection at z12 for the model used in the example. The actual
internal multiple (see Fig.(4)) is precisely:

−T01T12R3R2R3T21T10δ(t− (2t2 − t1). (23)

Hence the time prediction is exact and the amplitude has an extra power of T01T10 (T12T21)2, which
is always less than one. The conclusion is that, once again, the predictor has too much transmission
(consistent with the method being an attenuator rather than an eliminator) down to and including
the shallowest downward reflection point; the time prediction is precise, and the residual multiple
after adding the data, D = b1, to the attenuator, b3, always has the same sign as the multiple.

To have a general formula for amplitude prediction of the algorithm, we need to generalize the
example to a model with n layers with respective velocities of cn; n being an integer. Using equa-
tions (9)-(22), the definitions R1 = R′

1 and R′
N = RNΠN−1

i=1 (Ti−1,i Ti,i−1), Einstein’s Summation
Convention and the reflection data from a normal incident spike wave:

D(t) = R′
nδ(t− tn) + · · · , (24)

we obtain the result:

b3(k) = R′
iR
′
jR

′
ke

ikziH(zi − (zj + εj))e−ikzjH(zk − ε2 − zj)eikzk ,

b3(t) = R′
iR
′
jR

′
kδ(t− (ti + tk − tj). (25)
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Figure 5: Shows first order Internal Multiples with downward reflection at j=2. They all have the same attenuation
factor AFP.IM = T 2

01T
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Evaluating Eq.(25) for different values of i, j and k we are able to generalize the amplitude prediction
of first order internal multiples given by the leading term of the first order internal multiple removal
subseries –Eq.(9). The generalization of the predicted internal multiple amplitude states that the
overabundance of transmission coefficients depends on the position of the shallowest downward
reflection. This attenuation factor of the predicted internal multiple, (AFP.IM ), is:

(AFP.IM )j =





T0,1T1,0 for j = 1

Πj−1
i=1

(
T 2

i,i−1T
2
i−1,i

)
Tj,j−1Tj−1,j for 1 < j < J

(26)

for each internal multiple; where j represents the interface where the downward reflection took place,
and J is the total number of interfaces in the model. The interfaces are numbered with integers,
starting with the shallowest location as shown in Fig.(5). Eq.(26) is valid for any number of layers,
and it indicates that the actual algorithm predicts the precise arrival time and an attenuated
amplitude using the recorded primary events.

The correct arrival time is not given by the reference medium, but by combinations of the data.
b3 predicts first order internal multiples using three events within the data (see Fig.(7)). The
attenuation factor of the predicted internal multiple –Eq.(26)- is related directly with the trajectory
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Figure 6: Predicted Internal Multiple. From left to right, the third primary has a negative phase and corrects the
time.
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Figure 7: Predicted Internal Multiple. From left to right, the third primary has a negative phase and corrects the
time.

of the event from b1 computed with a negative sign in the phase for the second depth integral in
Eq.(9); the detailed study of this approximate amplitude shows that it has an overabundance of
two transmission coefficients at the interface where the downward reflection took place and four
extra transmission coefficients at all the other interfaces above this one –see Fig.(8). The AFP.IM

is completely independent of the place where the two upward reflections occurred; b3 is always an
amplitude attenuator that gives the precise time of all first order internal multiples.

In an important and significant paper, Ten Kroode (2002)(7) presents an analysis of the effectiveness
of the inverse scattering internal multiple attenuator using the metric of how well the algorithm
attenuates synthetic data corresponding to the first approximation of internal multiples in a forward
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Figure 8: The leftmost figure represents the amplitudes of the three primaries combined to predict the internal
multiple showed on the right.

series. The measure of effectiveness we adopt is how well the attenuator removes actual internal
multiples, a measure that keeps us close to the field data problem (9). That paper, refers to
the Weglein et al (1997)(14) internal multiple algorithm as predicting time but not the amplitude
of internal multiples. Although in some pristine sense a true statement, it is hardly relevant
since the algorithm is understood to be an attenuator, not an eliminator (14). More seriously,
it does not convey the actual useful amplitude information predicted by the algorithm, as a very
effective attenuator, and could lead to the erroneous conclusion that only time is predicted, and,
subsequently, a significant discounting of the method’s well understood intrinsic conceptual and
practical value. In fact, as we have further demonstrated in this paper, the attenuator predicts the
perfect time and an amplitude which is always a useful approximation to the actual.

As was mentioned earlier, there are several distinct conceptual steps taken in the development of
the inverse scattering internal multiple attenuation algorithm, reviewed in Weglein et al (2003)(17)
that are worth mentioning here for completeness and clarity.

First, there was a recognition that the inverse scattering series allows the inversion for V , directly
from G0, and recorded data, without updating the background or assuming the background is close
to the actual. Second, there is a concept that inversion can be considered as a set of tasks, and that
isolated tasks could be located and extracted to operate as task specific subseries. Third, if one of
your tasks is the removal of internal multiples, the first step is to define the meaning of an internal
multiple. Fourth, with a definition of what an internal multiple means, you seek to determine how
and where those events appear in the forward scattering series, and then seek, by analog, where the
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removal process might reside in the inverse series. Each of these steps is distinct and has different
issues and assumptions, and will benefit from expanded concepts as well as the class and type of
events you are able to accommodate in your classification. The conclusions of this paper are valid
within the framework provided in (17) and seismic events accommodated therein, when applied to
a 1D layered medium and a normal incident plane wave. Nita et al (2005) (11) have generalized the
two reflector case of the attenuation compared to elimination issue for a 1D medium and prestack
data and the corresponding prestack internal multiple attenuation algorithm. The conclusion is
that each p component of the shot record data satisfies the T01(p)T10(p) multiplicative difference
between attenuation and elimination, the generalization of the p = 0 normal incidence case.

Issues around the definitions, and extensions of definitions, for multiples and primaries, and gener-
alizations to what are now suggested as composite and prime events, are introduced and discussed
in Weglein and Dragoset (2005)(18).

Discussion

There has been a rejuvenated interest in removing multiples, and internal multiples in particular,
due to the industry trend to deep water and exploration beneath complex and ill-defined geologic
overburdens, such as salt, basalt and karsted sediments. The inability to adequately determine
material properties, and boundaries under these circumstances, is considered among the biggest
impediments to current exploration seismology. The inverse scattering series has the potential
of accomplishing all tasks associated with inversion, including the removal of internal multiples,
with absolutely no knowledge or determination of the wave propagation properties in the earth.
Hence, it is a direct response to the current significant challenge of producing effective methods for
attenuating internal multiples under circumstances where the ability to determine the velocity is far
from adequate. The order of an internal multiple is defined as the number of downward reflections
it has experienced, independent of the location of the reflectors. All of the internal multiples of a
given order are removed by a task specific subseries of the inverse scattering series.

The first term of that removal subseries is an attenuator; and, hence, as expected reduces the
amplitude of all internal multiples of that order, by precisely predicting the time and approximately
predicting the amplitude. The inverse scattering internal multiple attenuation algorithm, for a given
order of multiples, is that first term in the removal series. The predicted amplitude differs from
the actual in a precise and well understood manner, and the residual multiple after attenuation is
always with the same sign as the original. Hence, the inverse scattering internal multiple algorithm
predicts both the time and amplitude of internal multiples. The time is exact and the amplitude is
approximate, which is faithful to its promise to be an attenuator. If you require more effectiveness
in an attenuator, to e.g. move the algorithm closer to an eliminator, two paths suggest themselves:

1. provide a background medium closer to the actual, and once again choose the first term in
the removal series, or

2. include higher terms in the removal series that operate without requiring any velocity infor-
mation as input.

Examples of techniques that are in the former category are Berkhout et al (2000) (3) and Malcolm
and De Hoop (2005) (8). In the former Berkhout and Verschuur feedback method a free surface and
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interface model is used to successively remove free surface and then internal multiples having their
shallowest downward reflection at a given reflector. That method requires precise information down
to and including a given reflector to eliminate all the internal multiples having a shallowest reflector
at that interface. The Malcolm and Dehoop method based on the Bremmer series assumes an
accurate propagation velocity model everywhere and essentially models and subtracts the internal
multiple. Each approach could provide value under different circumstances, and belongs in a tool
box of techniques. However, the prime practical motivators of the rejuvenated interest in multiple
removal, beginning about ten-fifteen years ago, (and the prime driver behind our efforts), was due
to two factors: E&P moving to deep water and exploring beneath ever more complex and difficult
to define overburdens. The inability to adequately model propagation in complex media is a very
serious challenge for imaging and inverting primaries today, where both the wave or ray paths and
reflections are fewer than the more complicated and elusive corresponding multiples. Hence, the
second approach, pursuing the higher terms in the removal series, which do not require knowing or
determining background velocity information, is the path we lean towards and generally advocate
for achieving greater efficacy in addressing the current major prioritized real world challenges and
concerns. That research program will be the subject of a future communication. When you are in
a subsalt play and the primaries and multiples are all small and potentially interfering, a residual
small multiple can be a serious problem.

Conclusions

In an earlier work, Weglein et al (2003)(17) examined a simple two reflector 1D model to deter-
mine the precise nature of the amplitude and phase prediction effectiveness of the internal multiple
attenuation algorithm. This paper progresses that analysis and understanding by extending the
evaluation to first three and then an arbitrary number of reflectors. The central conclusion of the
current analysis is that the difference between removal and attenuation properties resides solely
in too many factors of transmission coefficients down to and including the depth of the shallowest
downward reflector. All of the differences between propagation in actual and propagation in refer-
ence below the shallowest downward reflection, play absolutely no role whatsoever in determining
the amplitude efficacy of the inverse scattering attenuator. This positive and encouraging result
helps explain the impact it has had with field data application, especially when applied in very
complex geologic circumstances.

There are practical prerequisites for free and internal demultiple algorithms, including deghosting
and wavelet estimation. The degree of effectiveness of the demultiple procedure can often depend
upon the degree of satisfaction of its prerequisites. The energy minimizing adaptive subtraction
method (e.g., Verschuur (1991) (13), Carvalho and Weglein (1994) (4), Matson (2000) (10)) has
demonstrated a reasonable record of positive impact but can tend to fail exactly when the under-
lying physics of the demultiple shines. The methods for satisfying and providing the prerequisites
that serve the underlying demultiple deserve to be as strong and complete as the methods they
are meant to serve. Efforts in that direction are exemplified by Weglein et al(2002) (16) and
Guo (2005) (6). The overriding prerequisite is that data has been adequately collected and/or
reconstructed consistent with the dimension of geological variation in the subsurface.

There are two ingredients in predicting a seismic event: the time and the amplitude. The former is
critical since a correct amplitude at an incorrect time provides no value. Hence, the fact that the
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very first term in an infinite series for removing all internal multiples of a given order predicts the
correct time is fortuitous. The further understanding presented in this paper, that the first term in
addition provides an amplitude approximation, whose error is independent of all properties below
the shallowest reflector, only adds to its useful qualities. Finally, we remind ourselves that all of
this benefit is provided with absolutely no subsurface information, whatsoever.
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An inverse scattering internal multiple elimination method:
Beyond attenuation, a new algorithm and initial tests

Adriana Citlali Ramı́rez and Arthur B. Weglein

Abstract

This paper presents our initial research efforts to address the complete removal of internal
multiples from marine seismic data, without destroying primary reflections and with absolutely
no knowledge of the subsurface. To address the problem of moving towards elimination we can
either: introduce a variable background, or study higher order terms in the inverse scattering
series with a constant background and find the subseries that is going to remove internal mul-
tiples. Although we encourage that both of these approaches be pursued, the concepts and
methods of this paper belong to the second category. Avoiding the need for a velocity model
has a practical impact especially in the cases when the adequate velocity is unobtainable. The
inverse series can predict and remove internal multiples in terms of the collected data and a
constant velocity model (usually waterspeed). This research aims to progress understanding
the phase and amplitude properties of the inverse scattering internal multiple attenuator (F.
Araújo, 1994 and Weglein et al., 1997 and 2003) seeking to provide an improved amplitude
prediction by studying higher order terms in the internal multiple elimination series. Analytical
and numerical examples will be used to exemplify the concept of elimination of internal multi-
ples based on inverse scattering series and to define the current state of understanding of this
approach.

Introduction

A fundamental step in seismic processing is to seek to remove all multiples and to then use primaries
to determine the depth location of reflectors and to identify where medium properties change in
the subsurface. There are many methods, with different approaches and degrees of effectiveness,
developed and implemented to deal with internal multiples (an overview can be found in Weglein,
1999, and in the introduction and chapter one of the reprint series by Weglein and Dragoset, 2005).
These methods are defined as attenuators or eliminators, so it is convenient to distinguish between
these two terms: attenuation refers to the amplitude reduction of an event in the seismic data and
elimination refers to a complete subtraction of the amplitude of a specific event or set of events in
the data.

There is a significant challenge of producing effective methods for dealing with internal multiples
under circumstances where the ability to determine the velocity is far from adequate. In most
circumstances the inverse scattering internal multiple attenuator offers a high degree of effectiveness
(see e.g. Weglein et al., 2003 and Nita and Weglein, 2005), nevertheless, the industry trend towards
deep and ultra deep water, and exploration beneath complex and ill-defined geologic overburdens
(i.e. salt, basalt and karsted sediments) represent circumstances when it is necessary and useful
to go beyond reducing internal multiples. Furthermore, imaging techniques assume the data only
contain primaries (the need for improved imaging-inversion is also driven by the overall industry
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trend towards exploration and production in increasingly complex environments, Shaw and Weglein,
2004) and would definitely benefit from complete removal of internal multiples.

If multiples are not eliminated, they can be misinterpreted as primary reflections, or overlap with
primaries. The internal multiple elimination series, presented in this work, can deal with internal
multiple’s energy masquerading a small primary, by giving the precise arrival time of the internal
multiple and dealing with its amplitude without ever touching or affecting the primary; all that is
required is the reference medium and recorded data.

In this report, we present an inverse scattering based algorithm that goes further in the removal of
1st order internal multiples (the order of an internal multiple is defined by the number of downward
reflections from subsurface reflector at any depth). First, we are going to give a brief summary of
the phase and amplitude prediction properties of the inverse scattering internal multiple attenuator,
bIM1
3 . With this information, we are going to show how the attenuation factor of the amplitude

predicted by bIM1
3 suggests where to look in the inverse series for higher order terms that are going to

take the attenuator to an eliminator of 1st order internal multiples in terms of a subseries that only
requires the measured data and waterspeed. We then identify these terms and introduce their theory
and diagrams. Finally, we present numerical examples where we aim at a small residual internal
multiple after attenuation interfering with or masquerading a small target primary. Description
of specific features in the movement from attenuation towards elimination will be presented in
Appendix A. Open issues and future plans will be discussed.

Internal Multiple Attenuation

The material presented in this section is well known, but it is included for completeness; it follows
the definitions and concepts introduced by Weglein et al. (1981) and F. Araújo (1994), and further
developed in Weglein et al. (1997) and (2003).

The inverse scattering series is a multidimensional inversion method that determines subsurface
physical properties using reflection measured data, D, and a reference medium Green’s function,
G0. The wave propagation is characterized by differential wave operators, L and L0, and its
corresponding Green’s functions, G and G0, for actual and reference medium, respectively. For
our purposes, we choose the reference medium to have homogeneous properties, i.e. constant
velocity, and we define V , the perturbation operator, as the difference between the differential
wave operators: V = L0 − L. We also define the scattered field, Ψs, as: Ψs = G−Go.

The forward scattering series constructs the seismic field, Ψs, in terms of reference medium prop-
agation, and it is given by:

Ψs = G0V G0 + G0V G0V G0 + G0V G0V G0V G0 + · · · (1)

The goal of inversion is to solve for V , which is done by writing V in orders of the measured data,
(Ψs)m = G−G0 (the subscript m indicates measured values):

V =
∞∑

i=1

Vi = V1 + V2 + V3 + · · · , (2)
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where V1 is the first order approximation to V and is linear to the measured data, D = (Ψs)m, the
second term is quadratic, the third term is cubic and Vi is ith order in the data. The expansion of
V in terms of the measured data leads to the inverse scattering series:

D = G0

( ∞∑

i=1

Vi

)
G0 + G0

( ∞∑

i=1

Vi

)
G0

( ∞∑

i=1

Vi

)
G0 + · · · ,

= G0V1G0 + G0V2G0 + G0V1G0V1G0 + G0V3G0 + G0V1G0V2G0 + · · · (3)

The terms that are equal order in the data are equated to obtain:

G0V1G0 = D (4)
G0V2G0 = −G0V1G0V1G0 (5)
G0V3G0 = −G0V1G0V1G0V1G0 −G0V1G0V2 −G0V2G0V1 (6)

...

These equations allow us to solve for V1, V2, V3, etc. as a means to construct V from G0 and
measured data.

A part of the third term in the inverse scattering series: (G0V1G0V1G0V1G0) was identified to
contain the leading order contribution for the removal series of 1st order internal multiples, as
described in Araújo (1994). The leading order term, known as the internal multiple attenuator, is
an algorithm that attenuates internal multiples, operating without any knowledge or determination
of the medium’s velocity model.

To simplify the current analysis, we assume that the actual medium varies only in depth. The 2-D
generalization of the 1st order internal multiple attenuator, bIM1

3 , can be seen in i.e. Weglein et al.
(2003). The 1D earth and normal incidence wave version is (Weglein et al., 2003):

b1(k) = D(ω), (7)

bIM1
3 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ z1−ε2

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε1

dz3e
ikz3b1(z3), (8)

where k = 2 ω
c0

is the vertical wavenumber and the superscript IM1 refers to the 1st order internal
multiple elimination series.

Let’s follow a simple procedure to examine the inner workings of the attenuation algorithm:

1. Start with a 1D layered medium, a normal incident spike wave and its recorded data, D.

2. Take the 1D data, in time, and perform a temporal Fourier transform to take the data to ω
space:

D(t) −→ D(ω).

3. We now define the vertical wave number as kz = k = 2ω
co

, where co is the constant reference
velocity, and introduce this definition into D(ω);

D(ω) −→ D(k
c0

2
).
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4. Now, we can write the data in terms of k, which defines b1(k):

D(k) −→ b1(k).

5. Then, we perform another Fourier transform that brings b1(k) to pseudodepth z (the pseu-
dodepth is defined in the reference medium as z = c0t

2 ):

b1(k) −→ b1(z).

6. This is the effective data that is going to be taken through the b3
IM1 algorithm, Eq.(8), to

obtain a first order internal multiple prediction.

j = 2

j = 1
T 0 1

R 2

  T 0 1

T 1 0

R 2

R 1T 1 0

T 0 1 T 1 0

T 1 0

R1

T 0 1

R 2 R 2

T01R2T10 T01R2T10 R1  x x  = T01 T10  R2 R1 R2 T10 T 01 

  t1         -      t2       +       t3         =                  Exact  time

  Attenuated amplitude by a factor of  

               AF P.IM= T01 T10

Figure 1: Time and amplitude prediction of a 1st order internal multiple.

The attenuation algorithm constructs its prediction using three sets of data, refer to Fig.(1). For
time prediction it takes the time of the first event, plus the time of a second event minus the time
of a third event with a smaller pseudodepth. This subtraction can be seen in the negative phase
of the second depth integral in Eq.(8); the process gives us the correct arrival time. In the case of
the amplitude prediction the algorithm multiplies the amplitudes of the three events. The result is
an estimate of the amplitude of the true internal multiple. This predicted amplitude is always less
than the true amplitude and the error is a factor known as the attenuation factor of the predicted
internal multiple, AFP.IM ,

(AFP.IM )j =





T01T10 for j = 1

Πj−1
i=1

(
T 2

i i−1T
2
i−1 i

)
Tj j−1Tj−1 j for 1 < j < J

(9)

where j represents the interface where the downward reflection took place, J is the total number
of interfaces in the model and Tj−1 j and Tj j−1 are the transmission coefficients going down and
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up through the interface j, respectively. The interfaces are numbered with integers, starting with
the shallowest location. For the simplest first order internal multiple shown in Fig.(2), the true
amplitude is −T01R2R1R2T10 and the one predicted by bIM1

3 is T01T10R2R1R2T10T01, therefore, the
attenuation factor is T01T10, according to Eq.(9).

In a previous work, Ramı́rez and Weglein (2005) showed and concluded that the difference between
complete elimination and the attenuation provided by bIM1

3 , resides in the attenuator having extra
powers of transmission coefficients down to and including only the depth of the downward reflection,
completely independent of the rest of the path that the internal multiple has travelled.

Internal Multiple Elimination

*
Source Receiver

 z

T01

T10

 j=1

  j=2
R2 R2

R1

Figure 2: First order internal multiple with downward reflection at j = 1.

To build a first order internal multiple elimination series that starts with bIM1
3 we need to identify

higher order terms which correct the 1st order prediction towards the true amplitude while not
affecting the primaries. The objective is to completely subtract the amplitude of multiples within
the data, therefore, the inverse scattering subseries for internal multiples elimination should be
able to predict the true amplitude for these events by correcting the attenuation factor –Eq.(9).
The AFP.IM is always less than one, so after adding the next terms in the elimination series, the
attenuation factor for the total series should be equal to one, thus, the internal multiple elimination
series will completely remove the amplitude of the 1st order internal multiples.

Using the two reflectors example shown in Fig.(2), we are going to seek how and where in the
inverse series the removal process resides. The justification for using this simple analytic example
to find and construct the elimination series, comes from the fact that the attenuation factor of the
predicted internal multiple, Eq.(9), is affected by the history of the event down to and including only
the depth of the shallowest reflection, independent of the place where the two upward reflections
occurred. With one single example we are introducing the theory of the series for elimination of all
1st order internal multiples with downward reflection at the first interface.

For the multiple in Fig.(2), the predicted amplitude is attenuated by a factor of (AFP.IM )j=1 =
T01T10. Since bIM1

3 has estimated the internal multiple amplitude, the purpose of the higher order
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terms in the elimination series is to remove the effect of the attenuation factor. Hence those higher
order terms need to build a series that sums up to 1

T01T10
. The quantity 1

T01T10
can be described as

an infinite geometric series:

1
T01T10

=
1

(1−R2
1)

= 1 + R2
1 + R4

1 + R6
1 + · · · (10)

The right hand side is a Taylor expansion in terms of R1 (the reflection coefficient for the shallowest
interface). If we multiply Eq.(10) by the attenuation factor we find

T01T10 ∗
(

1
T01T10

)
= T01T10 ∗

(
1 + R2

1 + R4
1 + R6

1 + · · · ) . (11)

This Taylor series is our initial key to searching for, and studying, the location of the first term
beyond attenuation. On the left hand side of Eq.(11), the first term corresponds to the (AFP.IM )j=1

given by b3
IM1 and our conjecture is that the second term should reside within higher order terms

in the inverse series. On the right hand side of the equation, all higher order terms exhibit even
powers of the reflection coefficient, R1. This allows us to think that the second term in the removal
series should be found within the fifth term in the inverse series:

V5 = −(V1G0V1G0V1G0V1G0V1 + V2G0V1G0V1G0V1 + V1G0V2G0V1G0V1

+ V1G0V1G0V2G0V1 + V1G0V1G0V1G0V2 + V3G0V1G0V1

+ V1G0V3G0V1 + V1G0V1G0V3 + V4G0V1 + V1G0V4). (12)

represents data.

pseudodepth Z1

pseudodepth Z2

(R1)
3

T01 R2 T10 T01 R2 T10

Figure 3: Higher order diagram.

The selected term should have the exact time of the true internal multiple, and three scattering
interactions at the first interface to obtain the two extra reflection coefficients for the amplitude
correction. A first diagram looks like the one in Fig.(3), and the algorithm is going to behave in
the following way:

1. Start with a 1D medium, two reflectors and a normal incident spike wave. The data contain
two primaries, one 1st order internal multiple and higher order terms

D(t) = R1δ(t− t1) + T01R2T10δ(t− t2)− T01R2R1R2T10δ(t− (2t2 − t1)) · · ·
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2. b1(k) is the effective data and it has the true amplitude for primaries and internal multiples
within the data,

b1(k) = D(ω).

3. bIM1
3 , the attenuator, is the leading order term in the elimination series. Its amplitude pre-

diction for the internal multiple shown in Fig.(2) is

|bIM1
3 | = T01T10 ∗ (T01R2R1R2T10) ,

where the true internal multiple amplitude has been factored out.

4. bIM1
5 gives the next term in the elimination series,

|bIM1
5 | = T01T10 ∗R2

1 ∗ (T01R2R1R2T10) .

5. Adding the three terms, we obtain the second order estimate for the 1st order internal multiple,

|b1 + bIM1
3 + bIM1

5 | = primaries +
[−1 + T01T10 ∗ (1 + R2

1)
] ∗ (T01R2R1R2T10) .

In the factor
[−1 + T01T10 ∗ (1 + R2

1)
]
, the first term (−1) comes from the internal multiple

term in the data. The second term, T01T10 ∗ (1 + R2
1), contains the first two terms in the

geometric series in Eq.(10). Hence, bIM1
3 + bIM1

5 gives us a better estimate of the internal
multiple amplitude,

T01T10 ∗ (1 + R2
1) −→ 1

and [−1 + T01T10 ∗ (1 + R2
1)

] −→ 0.

This result shows the first attempt to move the attenuator closer to an eliminator; the am-
plitudes of primary reflections are preserved, and no knowledge of the subsurface is required.
By induction, we can expect the internal multiple elimination series to reside only in odd
terms of the inverse scattering series (bIM1

3 + bIM1
5 + bIM1

7 + · · · ).

The second term in the elimination series, b5
IM1 , is the first step to move the algorithm towards an

elimination of 1st order internal multiples (a complete derivation of this term is given in appendix
A); it comes from V1G0V3G0V1, a part of the fifth term in the inverse scattering series –Eq.(12)-
and it is given by

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

[
b1(z′)3 + 2 b1(z′)

∫ z′−ε

−∞
dz′′′ b1(z′′′)2

]∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (13)

To provide a better understanding of the performance of bIM1
5 in the subtraction of multiples within

the data, we are going to follow a simple example. The model is shown in Fig.(4).

The data contains:
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Reference Half Space

*

Source Receiver

Z 01

Z 12

Z 23

C o

 C 1

 C 2

 C 3

z
Z = 0

Figure 4: 1D layered medium.

• Three primaries:

R1δ(t− t1) + R′
2δ(t− t2) + R′

3δ(t− t3),

where R′
2 = T01R2T10 and R′

3 = T01T12R3T21T10.

• Four 1st order internal multiples with downward reflection at the first interface:

(IM)j=1 =− T01R2R1R2T10δ(t− (2t2 − t1))− 2T01R2R1T21R3T12T10δ(t− (t2 + t3 − t1))

− T01T
2
12R3R1R3T

2
21T10δ(t− (2t3 − t1)).

• One 1st order internal multiple, generated at the second reflector:

(IM)j=2 = −T01T12R3R2R3T10T21δ(t− (2t3 − t2)).

• Higher order internal multiples.

The effective data is:

b1(z) =
∫ ∞

−∞
e−ikzb1(k) dk

= R1δ(z − z1) + R′
2δ(z − z2) + R′

3δ(z − z3) + higher order terms.

And the output of the attenuator for 1st order internal multiples is:

b3(t) = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)) + 2R1R2R3T

2
01T

2
10T12T21δ(t− (t2 + t3 − t1))

+ R1R
2
3T

2
01T

2
12T

2
21T

2
10δ(t− (2t3 − t1)) + R2R

2
3T

3
01T

3
10T

2
12T

2
21δ(t− (2t3 − t2)),

= T01T10 ∗ (IM)j=1 + (T01T10)2 ∗ T12T21 ∗ (IM)j=2. (14)
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The second term in the multiple elimination series has two parts:

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)3

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′

[
2 b1(z′)

∫ z′−ε

−∞
dχb1(χ)2

]∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

bIM1
5 (k) = bIM1

51 (k) + bIM1
52 (k). (15)

We substitute the effective data into bIM1
5 (k), and evaluate the integrals analytically. Then we

perform an inverse Fourier transform to take bIM1
5 (k) back to the time domain, which gives:

bIM1
51 (t) = T01T10 ∗R2

1 ∗ (IM)j=1 + (T01T10)2 ∗ T12T21 ∗ (R′
2)

2(IM)j=2,

bIM1
52 (t) = (T01T10)2 ∗ T12T21 ∗ 2R2

1 ∗ (IM)j=2. (16)

Thus,

bIM1
5 = T01T10 ∗R2

1 ∗ (IM)j=1 + (T01T10)2 ∗ T12T21 ∗
[
2R2

1 + (R′
2)

2
] ∗ (IM)j=2. (17)

Adding the effective data with the first two terms in the 1st order internal multiple elimination
series,

b1 + bIM1
3 + bIM1

5 = R1δ(t− t1) + R′
2δ(t− t2) + R′

3δ(t− t3)

+
[−1 + T01T10(1 + R2

1)
] ∗ (IM)j=1

+
[−1 + (T01T10)2 ∗ T12T21 ∗ (1 + 2R2

1 + (R′
2)

2)
] ∗ (IM)j=1.

(18)

The factor that multiplies the internal multiples generated at the first reflector, (IM)j=1, is the
same as the one we found in the example of Fig.(2), and it can be compared with the geometric series
in Eq.(11). The factor that multiplies the multiples generated at the second reflector, (IM)j=1,
corresponds to the first terms in the more complicated geometric series for:

1
(T01T10)2T12T21

=
1

(1−R2
1)2(1−R2

2)
= 1 + 2R2

1 + R2
2 + 3R4

1 + 2R2
2R

2
1 + R4

2 + 3R2
2R

4
1 · · ·

(19)

The terms on the right hand side of this Taylor series, corresponds to the factors that we found
in bIM1

5 . Hence, adding these extra terms in the elimination series is building a sum of amplitude
corrections that is going to improve the subtraction of internal multiples in the data. The
second term in the 1st order internal multiple elimination series can be separated in two parts, as
we saw in the previous example, represented by the diagrams in Fig.(5). Both diagrams affect all
1st order internal multiples:

• The upper diagram corresponds to the first term in Eq.(15) and it starts a series that elimi-
nates all 1st order internal multiples that were downward reflected at the shallowest reflector.
It has three hits at the shallowest reflector indicating triple self interaction, which means that
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Triple hit - self interaction
diagram

Triple hit – double self 
interaction diagram

Figure 5: Higher order diagrams for bIM1
5 .

Figure 6: Higher order diagrams.

the data are combined with itself to give higher order amplitude information and the cor-
rect time. The self interacting data, contain amplitude information that corresponds to the
reflection coefficient of the generating reflector (where the downward reflection took place).
This diagram is the main contribution of bIM1

5 to the elimination of internal multiples. The
subseries of the 1st order internal multiple elimination series, that starts with this diagram,
contains a contribution from each term in the elimination series, bIM1

3 + bIM1
5 + bIM1

7 + · · · .
The first diagram for this subseries is the upper picture in Fig.(5) , which corresponds to
bIM1
51 , and the higher order terms are represented with the diagrams shown in Fig.(6). The
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sum of these diagrams leads to the mathematical form:
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′ (|b1(z′)2|/1− |b1(z′)2|

)
b1(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (20)

• The diagram located at the bottom of Fig.(5) represents the second term in Eq.(15). Two self
interacting data give second order corrections to the interfaces above the generating reflector,
they give extra amplitude information of any interface above of the generating reflector. Since
it corrects reflectors on the overburden of the generating reflector, it doesn’t touch the 1st

order internal multiples that were downward reflected at the shallowest reflector, but it further
attenuates all 1st order internal multiples generated at deeper reflectors.

Although the multiple amplitude can be reduced substantially by the first term in the elimination
series, bIM1

3 , there is in some cases an observable residual that interferes with imaging, which can
introduce interpretation uncertainties. The second term in the internal multiple elimination series,
bIM1
5 , always predicts the exact time of 1st order internal multiples and improves their amplitude

prediction by adding nonlinear contributions in terms of reflection coefficient’s (corresponding to
the reflectors at or above the generating reflector) to improve the prediction and help to move the
attenuator closer to an eliminator of internal multiples, while leaving all primaries unaffected.

Numerical Example

Water           c0=1500m/s     

z

Mud/siltstone   c1=2280m/s      

    Basalt           c2=5700m/s     

Sandstone        c3=3700m/s     

 z =800m

 z =2300m

 z =3000m

 z =4600m

Sandstone        c3=4000m/s     

Figure 7: 1D model.

An elimination series for internal multiples based on inverse scattering series has the potential and
promise of attacking difficult multiples while preserving all primaries. The algorithm proposed
here represents the second term, after the attenuator, that will help to move closer to a complete
elimination of 1st order internal multiples without the requirement of a velocity model or any
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subsurface information. The objective of elimination using only recorded data and information
about the reference medium is achievable through the inverse scattering subseries formalism, but
it has some very important prerequisites: the source signature or wavelet should be deconvolved,
source and receiver ghosts, and free surface multiples need to be eliminated from the measured
data. If all the prerequisites are satisfied, the algorithms are able to predict and start the removal
of 1st order internal multiples within the data.

Residual

–5

–4

–3

–2

–1

0

0 0.5 1 1.5 2 2.5

Figure 8: The traces on the left are the data with primaries and 1st order internal multiples. The traces in the
middle are the prediction of bIM1

3 . The traces on the right are the residual after adding b1 + bIM1
3 .

To illustrate and test the performance of the demultiple algorithm given by bIM1
3 + bIM1

5 , we use a
1D model and a spike wave to generate synthetic data. The 1D layered medium is shown in Fig.(7).
The algorithm for bIM1

5 is written in terms of b1, the effective data, just as the attenuator. This
gives a computational advantage, allowing to compute bIM1

3 together with bIM1
5 . The interested

reader can find details in the coding of the 1st order internal multiple attenuator, bIM1
3 in Kaplan

et al. (2005).

On the left side of Fig.(8) we observe the data with primaries and first order internal multiples.
The inner traces are the output of the attenuator, bIM1

3 , it leaves all primaries unaffected and gives
the first estimate of the amplitude (with opposite sign) of 1st order internal multiples with the
correct time prediction. The traces on the right side of Fig.(8) are the primaries and the residual
multiple after adding the data, D = b1, to the attenuator, bIM1

3 .

In Fig.(9) we observe the data (leftmost) with primaries and attenuated first order internal multiples
b1 + bIM1

3 . The traces in the middle are the output of the second term in the elimination series,
bIM1
5 . The second term gives a second order approximation for the amplitude (with opposite sign)

of 1st order internal multiples and its time prediction is perfect. On the right side of Fig.(9), the
traces are the primaries and a small residual multiple after adding the data, D = b1, to the first
two terms in the elimination series, bIM1

3 + bIM1
5
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Residual

–5

–4

–3

–2

–1

0

0 0.5 1 1.5 2 2.5

Figure 9: The traces on the left are the residual after adding b1 + bIM1
3 . The traces in the middle are the prediction

of bIM1
5 . The traces on the right are the residual after adding b1 + bIM1

3 + bIM1
5 .

Conclusions

Many processing algorithms are based on the assumption that seismic data contain only primaries
and the interpretation of seismic data is most straightforward when the multiples are completely
removed from the traces. For this reason, effective demultiple techniques are required. We presented
an algorithm and examples of a theory that doesn’t assume any knowledge of the earth below the
receivers and improves the attenuation of 1st order internal multiples while leaving all primary
reflections unaffected. The initial research reported here, showed that the prediction and removal
of the true 1st internal multiples amplitude can be achieved by the 1st order internal multiple
elimination series, based on inverse scattering, with a constant background or reference medium.

The first term in the elimination series is an attenuator, b3
IM1 ; it predicts the perfect time and

always significantly reduces but doesn’t eliminate the internal multiples from the data. To move
beyond attenuation, we studied higher order terms in the inverse series and identified the elimination
series for 1st order internal multiples. Higher order terms towards elimination are determined by
distinct non-linear mathematical expressions that only involve the measured data and the reference
medium. The second term in the elimination series, b5

IM1 , gives the precise arrival time of internal
multiples, and it further attenuates the amplitude. The second term can be separated in two parts,
the first one is the main contribution to improve the amplitude prediction and elimination of all 1st

order internal multiples and it begins an infinite subseries that further attenuates all multiples of
this order and completely removes the ones generated at the first reflector. A closed form for this
subseries has been identified, it shows a better estimate of the amplitudes and provides a significant
improvement towards the elimination of 1st order internal multiples.

In this theory, no assumptions about the earth below the receivers are made, this characteristic
makes it ideal for addressing one of the current challenges in exploration seismology: removing
multiples, locating and identifying targets in highly complex medium, when the velocity model is
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unobtainable. The conclusions of this report are valid within the confines of the 1D layered earth
wave analysis presented here and the framework provided in Weglein et al. (2003) and seismic
events accommodated therein. The extension to a multidimensional earth as well as extensions of
definitions of primaries and multiples are among our current research objectives.

The tests presented in this report, show value when going further in the inverse series for 1st order
internal multiple elimination with one term more than current attenuator.
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Appendix A

In this appendix we show the mathematical derivation that allows us to build a first order internal
multiple elimination series that starts with bIM1

3 . We examine higher order terms which contribute
to the correction of the amplitude prediction of bIM1

3 .

bIM1
3 predicts the precise arrival time and an attenuated amplitude using three primary events

within the data. The attenuation factor of the predicted internal multiple –Eq.(9)- is associated
with the trajectory of the event from b1 computed with a negative sign in the phase at the second
depth integral performed in bIM1

3 (the effective data, b1, is the corresponding data representation
of a model type independent V1). This fact gives us an indication when moving the algorithm
from attenuator towards an eliminator: the next term should not affect the outermost integrals but
it should change the innermost one with a higher order term keeping the precise time prediction.
Therefore, the first selection criteria is to look for higher order terms containing V1 at the extremes.

Start with the fifth term in the inverse scattering series:

V5 = −(V1G0V1G0V1G0V1G0V1 + V2G0V1G0V1G0V1 + V1G0V2G0V1G0V1

+ V1G0V1G0V2G0V1 + V1G0V1G0V1G0V2 + V3G0V1G0V1

+ V1G0V3G0V1 + V1G0V1G0V3 + V4G0V1 + V1G0V4)
V5 = V51 + V52 + V53 + V54 + V55 + V56 + V57 + V58 + V59 + V5 10. (21)

It contains four terms with V1 at the extremes:

V51 = V1G0V1G0V1G0V1G0V1 (22)
V53 = V1G0V2G0V1G0V1 (23)
V54 = V1G0V1G0V2G0V1 (24)
V57 = V1G0V3G0V1. (25)

V51 can be separated in sixteen different terms but only one of them has the correct phase manipu-
lation, corresponding to a similar behavior with the one that bIM1

3 shows at the outermost integrals;
after manipulating the Green’s functions, and converting V1 −→ b1:

B51(k) =
∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ ∞

−∞
dz2e

−ikz2b1(z2)
∫ ∞

−∞
dz3e

ikz3b1(z3)
∫ ∞

−∞
dz4e

−ikz4b1(z4)
∫ ∞

−∞
dz5e

ikz5b1(z5). (26)

A part of this term has been studied by Araújo (1994), and identified as the leading order term
of the second order internal multiple removal series. Some other parts of the term can predict
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first order internal multiples nevertheless, they affect not only the amplitude but the time in the
prediction.

We continue with V53, where we can find eight terms; two of them may have value for our problem:
∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ ∞

−∞
dz2e

−ikz2b2(z2)
∫ ∞

−∞
dz3b1(z3)

∫ ∞

−∞
dz4e

ikz4b1(z4), (27)

and:
∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ ∞

−∞
dz2b2(z2)

∫ ∞

−∞
dz3e

−ikz3b1(z3)
∫ ∞

−∞
dz4e

ikz4b1(z4). (28)

Once more, the outermost integrals are the same as the ones found in bIM1
3 . A part of these

terms can be used to predict first order internal multiples, but due to the inner integrals, the time
prediction is not correct. The same analysis holds for V54.

It seems like the parts of V51, V53 and V54 that can be related with 1st order internal multiples are
trying to invert these events, but not to remove them. Therefore we are not using any of these
terms at this moment.

We are going to study V57 = V1G0V3G0V1 in terms of data, b1, and call the result: B57(k):

B57(k) =
∫ ∞

−∞
dzb1(z)

∫ ∞

−∞
dz′b3(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzb1(z)

∫ ∞

−∞
dz′e−ikz′b3(z′)

∫ ∞

−∞
dz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b3(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′b3(z′)

∫ ∞

−∞
dz′′b1(z′′)

+ Σresidues (29)
B57(k) = B571(k) + B572(k) + B573(k) + B574(k) + Σresidues (30)

where the term b3 will be understood as the data representation of a general model type independent
V3 = −V1G0V1G0V1 − V1G0V2 − V2G0V1, just as b1 is related with V1; thus, the attenuator b3

IM1

is the part of b3 that starts the elimination process of first order internal multiples.

B573(k) contains the correct data−phase relation that is going to predict the true internal multiple’s
time. As an analogy to the term B3 studied by Araújo, a part of B573(k) is associated with the
removal series of first order internal multiples.
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It can be separated in the following nine terms:

B573(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b3(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b3(z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b3(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b3(z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b3(z′)δ(z − z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b3(z′)δ(z − z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b3(z′)δ(z − z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b3(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z − z′)

+
∫ ∞

−∞
dzeikzb(z)

∫ z−ε

−∞
dz′e−ikz′b3(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z − z′),

B573(k) = M51(k) + M52(k) + M53(k) + M54(k) + M55(k) + M56(k)
+ M57(k) + M58(k) + M59(k). (31)

M51(k) is the term satisfying the relations z1 > z2 and z3 > z2, which corresponds to the lower −
higher − lower representation of a first order internal multiple:

M51(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b3(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′), (32)

it contains the next term in the first order internal multiple elimination series: bIM1
5 . To find an

explicit form of bIM1
5 , we need to select the part of b3 that should be used in Eqn.(32) to predict 1st

order internal multiples with the precise arrival time and an amplitude similar to the prediction of
the attenuator but with extra reflection coefficient factors. These extra reflection coefficients should
correspond to the ones of the reflectors down to and including only the depth of the shallowest
multiple reflection.

We now examine the term b3 required in the second integral of M51. From the third term in the
inverse scattering series:

V3 = −V1G0V1G0V1 − V1G0V2 − V2G0V1. (33)

We select V1G0V1G0V1 because it is going to give us self interacting hits (data) corresponding to
the extra reflection coefficients that we need in order to move the attenuator towards an eliminator
of 1st order internal multiples, and when we introduce this term in M51 we find the correct phase
relation that is going to give the precise time of these events.
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The self interacting terms come from a part of V1G0V1G0V1 that is different from bIM1
3 . From

Fernanda Araújo’s thesis, we write V1G0V1G0V1 in its data representation:

B3(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′).

(34)

B3(k) was originally separated in four terms by Araújo (1994) when she was looking to find an
explicit form for the attenuator, bIM1

3 . These four terms are:

B3(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z

−∞
dz′e−ikz′b1(z′)

∫ ∞

z′
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z
dz′e−ikz′b1(z′)

∫ z′

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z
dz′e−ikz′b1(z′)

∫ ∞

z′
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z

−∞
dz′e−ikz′b1(z′)

∫ z′

−∞
dz′′eikz′′b1(z′′). (35)

In this separation, we can recognize the first term in the right hand side to be equal to bIM1
3 , except

for the fact that bIM1
3 doesn’t admit self interaction of the effective data, b1, for this reason, an

ε ¿ 1 was introduced in the limits of the integrals:

bIM1
3 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ z1−ε

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3), (36)

The ε ensures that the relations z1 > z2 and z3 > z2 are satisfied and avoids the possibility of
z2 = z1 and/or z2 = z3 and/or z1 = z3, which are the data self interactions we are looking for.

The data self interactions can be found in the four terms of Eq.(35); therefore, we need to give a
definition for these self interaction cases (z2 = z1, z2 = z3, z1 = z3 and z1 = z2 = z3), and we will
do it with the use of small parameters (ε ¿ 1) added or subtracted to the limits of the integrals.
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We then expand Eq.(35) in nine terms as:

B3(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b1(z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b1(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b1(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′),

B3(k) = B31(k) + B32(k) + B33(k) + B34(k) + B35(k) + B36(k) + B37(k) + B38(k) + B39(k).
(37)

All of the terms in which B3(k) can be separated contain a negative phase factor in the innermost
integral that is going to help to modify the time prediction. The first four terms on the right hand
side of Eq.(37) do not allow data self interactions; the rest of the terms contain at least one data
self interaction. We can observe that in the terms B35(k), B36(k), B37(k), B38(k) and B39(k) the
integration includes the functions δ(z′ − z′′) and/or δ(z − z′). Thus, after performing the three
integrations we end up with only one phase factor and the multiplication of the amplitudes of three
sets of data.

We are interested in the terms that have only one phase factor, and which phase factor correspond
to the deeper depth. So we drop:

B37(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ z′−ε

−∞
dz′′eikz′′b1(z′′), (38)

and

B38(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz′b1(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′), (39)

because the result will give phase information that doesn’t correspond to the deeper depth. In b37(k)
a data self interaction exists at z = z′ with no phase factor and z > z′′ with phase information
corresponding to the shallowest point: eikz′′ . For b38(k) a data self interaction exists at z′ = z′′
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with no phase factor and z′′ > z with phase information corresponding to the shallowest point:
eikz.

This leaves us with only three terms:

B35(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′)

B36(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz′b1(z′)δ(z − z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

B39(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)

∫ ∞

−∞
dz′′eikz′′b1(z′′)δ(z′ − z′′)

(40)

The first term, B35(k), is a primary with triple self interaction at the reflection depth. The second,
B36(k) and third, B39(k), terms are symmetric terms, they represent primaries with a double self
interaction on one of its legs and a single hit at the reflection point.

These are the terms that we are going to use to compute bIM1
5 :

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′ [B35(z′) + B36(z′) + B39(z′)

] ∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

=
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)3

∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

+
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′

[
2 b1(z′)

∫ z′−ε

−∞
dχ b1(χ)2

]∫ ∞

z′+ε
dz′′eikz′′b1(z′′)

=
∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

[
(b1(z′))3 + 2 b1(z′)

∫ z′−ε

−∞
dχ b1(χ)2

]∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (41)

bIM1
5 needs five sets of data to produce a prediction of an internal multiple. This prediction will be

added to b1 and bIM1
3 in order to perform a better reduction of the amplitude of 1st order internal

multiples. From these five sets of data, used by bIM1
5 , three of them are combined in the middle

term: B35(z′) + B36(z′) + B39(z′), which have data self interactions. This combination of five
sets of data gives the precise internal multiple arrival time and an attenuated amplitude. Adding
bIM1
3 + bIM1

5 gives a better estimate of the amplitude of 1st order internal multiples.
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Some remarks on the leading order imaging series algorithm for
depth imaging when the velocity model is unknown

Simon A. Shaw

Abstract

The inverse scattering series, a multidimensional direct inversion procedure, may be applied
to the seismic inverse problem to derive processing algorithms for the most general cases where
accurate a priori information about the subsurface is not available. Recently, some progress
has been reported in using the inverse series to address the problem of depth imaging in areas
of complex geology where the velocity model can be difficult to estimate accurately enough for
current algorithms. This research is meant to address the problem of depth imaging when the
velocity model is unknown or can not be accurately determined. A leading order imaging series,
a task-specific subseries of the inverse series, has been isolated for a 1D constant-density acoustic
medium and has been shown analytically to converge for any finite contrast between the chosen
reference velocity function and the actual velocity model. This imaging series is a Taylor series
expanded about each mislocated reflector whose approximate coefficients are leading order in
the scattered field. In this paper, a condition is derived which, when satisfied, shows that the
leading order imaging series improves the depths of reflectors over a linear imaging algorithm
using the reference velocity. This condition is satisfied by the downgoing wave’s transmission
coefficient in the precritical regime. The impact of residual internal multiples on the imaging
series is also studied. As expected, the effect of input data being contaminated by random noise
is shown to have only a minor impact on the depths predicted by the leading order imaging
series closed form.

1 Introduction

The inverse scattering series, a multidimensional direct inversion procedure, has been applied to
the seismic inverse problem to derive multiple attenuation algorithms that require no a priori
knowledge of the Earth’s material properties. The inverse series also has the potential to image
reflectors in depth without requiring the actual propagation velocity (7). Inverse series algorithms
are non-linear in the scattered field, which includes the source wavelet and a chosen reference
medium’s properties.

The primary goal of depth imaging is to produce a spatially accurate map of reflectors below
the Earth’s surface. Current depth imaging algorithms can be formulated from a linear inverse
scattering model in which the reference velocity is assumed to be close enough to the actual velocity
that reflectors are placed at their correct spatial locations. In practice, especially in complex
geological environments, the most accurate methods for deriving the reference velocity model may
be inadequate for linear imaging algorithms inasmuch as they fail to focus the reflected wavefield
at the correct location. This motivates the search for new imaging algorithms that have the ability
to accurately locate reflectors, even when the precise velocity model is not known.

(11) proposed using the inverse scattering series to derive a velocity-independent imaging algorithm.
The separation of inverse series terms that acted to correct the location of reflectors in a 1-D acoustic
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Figure 1: A multi-layer 1-D constant density acoustic model and no free surface.

medium was presented by (8). The authors demonstrated that these terms were consistent with
the terms of a Taylor series expanded about the mislocated reflector. (6) isolated a leading order
imaging series and analyzed its convergence properties. For a suite of interval velocity models,
this leading order imaging series has been found numerically to improve the depths of reflectors
compared with a linear imaging algorithm using the same reference velocity. While the algorithm
benefits from having low frequency information, it was shown to retain effectiveness even when zero
and some low frequencies are absent.

(4) have made progress extending the 1-D leading order imaging series to 2-D and (12) have
generalized the task separation concepts (i.e., separating imaging from parameter estimation) in
the inverse series to two-parameter acoustic and three-parameter elastic wave propagation. At
the same time, (3) have isolated and analyzed another subseries that simultaneously images and
inverts primaries to a high degree of accuracy for moderate contrasts between the actual and
reference media.

2 A leading order imaging series for a 1-D constant density acous-
tic medium

We consider a constant density acoustic medium with point sources and receivers located at ~x s =
(xs, ys, zs) and ~x g = (xg, yg, zg), respectively (see Fig. 1). Wave propagation in an acoustic medium
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can be characterized by the wave equation
(
∇2 +

ω2

c2(z)

)
ψ(~x |~x s;ω) = −A(ω)δ(~x − ~x s), (1)

where ψ is the pressure field, A is the source wavelet, c is the propagation velocity and ω is the
angular temporal frequency. The pressure wavefield due to the same source in the reference medium
which is chosen to be a wholespace with velocity, c0, is denoted by ψ0 and satisfies the equation

(
∇2 +

ω2

c2
0

)
ψ0(~x |~x s; ω) = −A(ω)δ(~x − ~x s). (2)

The scattering potential, defined as the difference between the wave equation operators in Eqs. (1)
and (2), is

V = k2
0α, (3)

where k0 = ω/c0 and α is the velocity perturbation, a dimensionless parameter that relates the
actual velocity, c, to the constant reference velocity, c0, such that

1
c2(z)

=
1
c2
0

[1− α (z)] . (4)

For this acoustic problem, the goal of inversion is to solve for α which can be written as an infinite
series:

α = α1 + α2 + α3 + . . . =
∞∑

n=1

αn, (5)

where α1, the first term in the series for α, is linearly related to the scattered field on the measure-
ment surface, ψs(~xg |~xs ; ω). The second term, α2, is quadratic in ψs, the third term, α3, is cubic
and so on.

After using the inverse scattering series (see, e.g., 7) to solve for α, we could then use Eq. (4)
to solve for the unknown velocity, c(z). However, the objective here is in fact not to solve for
the medium parameters (in this case just c), but to solve directly for the location at which the
perturbation, α, changes. This is the problem of imaging a medium whose velocity is not known
before or after the imaging procedure.

(6) isolated a subseries of the inverse series that locates reflectors in depth but does not go beyond
a linear inversion for medium properties at these reflectors. As such, this leading order imaging
series is an example of a task-specific subseries that has the sole objective of imaging in depth. For
prestack data, the leading order imaging series is

αLOIS(z, p) =
∞∑

n=0

(−1/2)n

n! cos2n θ0

[∫ z

0
α1(z ′, p)dz ′

]n ∂nα1(z, p)
∂zn

, (6)

where the first term, α1(z, p), is given by

α1(z, p) =− 8ζ0 cos2 θ0

∫ ∞

−∞
e−iωζ0(2z−(zg+zs))

∫ ∞

0
D(r; ω)J0(ωpr)rdrdω. (7)
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The horizontal and vertical slownesses, p and ζ0, respectively, are related to θ0 by

p
.=

sin θ0

c0
and ζ0

.=
cos θ0

c0
.

The data, D, are the scattered field with the source wavelet deconvolved (D = ψs/A) and J0 is the
zeroth order Bessel function of the first kind that arises due to the azimuthal symmetry:

J0(ωpr) =
1
2π

∫ 2π

0
eiωpr cos φdφ. (8)

The leading order imaging series has been shown to have a closed form, which efficiently encapsu-
lates an infinite number of terms in a single operation:

αLOIS(z, p) =α1 (z −∆, p) , (9)

where

∆(z, p) =
1

2 cos2 θ0

∫ z

0
α1(z ′, p)dz ′. (10)

In this paper, we will use this pre-stack closed form to analyze and evaluate the leading order
imaging series.

3 Evaluation of the leading order imaging series shift

For a suite of interval velocity models, the leading order imaging series has been found to improve
the depths of reflectors compared with a linear imaging algorithm using the reference velocity
(see, e.g., 5). Here, we investigate analytically under what conditions the algorithm improves the
depths of reflectors that have been imaged using current linear imaging algorithms supplied with
the reference velocity.

Consider a reflector that is located at depth zR. It is imaged at depth ẑR by the constant reference
velocity and at depth ẑLOIS

R by the leading order imaging series (see Fig. 2). We would like to know
how good an approximation ẑLOIS

R is to zR and, more importantly, whether ẑLOIS
R is an improvement

over ẑR. ¿From the travel time equation, the two-way vertical time to this reflector is

τ(zR) =2
∫ zR

0
ζ(z ′)dz ′, (11)

where, for simplicity, we assume that the sources and receivers are located at zs = zg = 0. Linear
imaging with the constant reference velocity will predict its depth at

ẑR =
τ(zR)
2ζ0

=
1
ζ0

∫ zR

0
ζ(z ′)dz ′. (12)
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Figure 2: Errors in the predicted depths. zR is a reflector’s true depth, ẑR is the depth predicted by the reference
velocity in the first term, and ẑLOIS

R is the depth predicted by the leading order imaging series.

This is its position in α1. Only if the actual slowness happens to be ζ0, will ẑR = zR. Given the
information contained in α1 (a combination of the information in the recorded data and the chosen
reference medium), the leading order imaging series will reposition the reflector at

ẑLOIS
R = ẑR +

1
2 cos2 θ0

∫ ẑR

0
α1(z ′)dz ′. (13)

Our objective is to determine whether ẑLOIS
R is, in general, closer to zR than ẑR is, i.e., under what

conditions the leading order imaging series is an improvement upon current imaging methods that
use an inadequate reference velocity. From Eq. (12), the error in the depth predicted by the first
term is

εREF = ẑR − zR =
∫ zR

0

ζ(z ′)− ζ0

ζ0
dz ′ (14)

which, when added to Eq. (13), gives the error in the depth predicted by αLOIS :

εLOIS =
∫ zR

0

ζ(z ′)− ζ0

ζ0
dz ′ +

1
2 cos2 θ0

∫ ẑR

0
α1(z ′)dz ′.

Both εREF and εLOIS will be smaller when the integral of α is smaller, which will be the case when
the actual velocity model is closer to the chosen reference velocity. The leading order imaging series
is an improvement over a linear imaging algorithm when

|εLOIS| < |εREF|, (15)

i.e., when
∣∣∣∣
∫ zR

0

ζ(z ′)− ζ0

ζ0
dz ′ +

1
2 cos2 θ0

∫ ẑR

0
α1(z ′)dz ′

∣∣∣∣ <

∣∣∣∣
∫ zR

0

ζ(z ′)− ζ0

ζ0
dz ′

∣∣∣∣ .

We can rearrange this inequality to arrive at

0 <

(
B

A

)
< 2 (16)
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where

A = ẑR − zR = εREF =
∫ zR

0

ζ(z ′)− ζ0

ζ0
dz ′

and B = ẑR − ẑLOIS
R =

−1
2 cos2 θ0

∫ ẑR

0
α1(z ′)dz ′.

If the condition in Eq. (16) can be satisfied, then the leading order imaging series will predict a depth
that is more accurate than current imaging with the reference velocity. For the simple example of
two reflectors, we can show that the condition will be satisfied. We consider a two-reflector model
where the vertical slowness profile is (see Fig. 1)

ζ(z) = ζ0(z) + (ζ1 − ζ0)H(z − za) + [ζ2 − (ζ1 − ζ0)]H(z − zb).

Then, for this example,

A =
∫ zb

0

(
ζ(z ′)− ζ0

ζ0

)
dz ′ =

ζ1 − ζ0

ζ0
(zb − za)

B =
−1

2 cos2 θ0

∫ ẑb

0
α1(z ′)dz ′ =

−1
2 cos2 θ0

(
−4 cos2 θ0

ζ0 − ζ1

ζ0 + ζ1
(ẑb − za)

)

= 2
(

ζ1

ζ0

(ζ0 − ζ1)
(ζ0 + ζ1)

(zb − za)
)

which, upon substitution into Eq. (16), gives

0 <
2ζ1

ζ0 + ζ1
< 2.

This result tells us that the downgoing transmission coefficient at the upper interface satisfies the
condition necessary to show that the leading order imaging series improves the predicted depth of
the second interface independent of (a) the depths of the two interfaces, or (b) the actual velocity
below the first interface.

4 Numerical examples with three interfaces – more about the
meaning of “leading order”

Analysis of the imaging subseries becomes more interesting for three or more reflectors because of
the effect of transmission loss in the overburden. Consider a model that consists of three horizontal
interfaces at depths za, zb and zc and a discontinuous velocity profile c(z) as depicted in Fig. 1.
The wavefield in the upper halfspace, ψ0, consists of an incident field, ψi, and a reflected field, ψr.
The measured reflected wavefield can be derived by decomposing the incident field into a sum of
plane waves (the Sommerfeld integral) and then matching boundary conditions at each interface
(see, e.g., 1). The result is

ψr(r; ω) =
iω

4π

∫ ∞

0

(
R01 + R̂12e

2iωζ1(zb−za) + R̂23e
2iω[ζ1(zb−za)+ζ2(zc−zb)] + . . .

)

ζ0

× eiωζ0(2za−zs−zg)J0(ωpr)pdp (17)
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where the reflection and transmission coefficients are functions of angle and are given by

Rjk =
ζj − ζk

ζj + ζk
j = 0, 1, 2, 3; k = j + 1 (18)

Tjk = 1− ζj − ζk

ζj + ζk
= 1−Rjk j = 0, 1, 2, 3; k = j + 1. (19)

We have further defined the amplitudes R̂12 = T01R12T10 and R̂23 = T01T12R23T21T10. The vertical
slownesses are functions of the incident angles in each layer:

ζj =
cos θj

cj
, j = 0, 1, 2, . . . (20)

The “+ . . .” in Eq. (17) are the internal multiple reflections in the data. For now, an internal
multiple removal algorithm, a subseries that begins in the third term of the inverse series, is
assumed to have been applied before the imaging subseries. This results in a new effective data
and a new effective α1 that contain only primary reflection events. This step is part of the strategy
of inverse series task separation described by Weglein et al. (7). For the two reflector examples
studied earlier, the internal multiples were of no consequence since the imaging series only uses
information recorded earlier than the primary event being imaged, which excluded the multiples.
In the next section, we will study the effect of a residual first order internal multiple that arrives
before the deepest primary being imaged.

Reverting to the symbol D for data that contain only primary reflections, and then performing
a linear inversion of the data (Eq. 7), the first term in the series for α(z) for this three-reflector
example is

α1(z, p) =8 cos2 θ0

∫ ∞

−∞

R01 + R̂12e
2iωζ1(zb−za) + R̂23e

2iω[ζ1(zb−za)+ζ2(zc−zb)]

4πiωζ0
e−2iωζ0(z−za)dω

=− 4 cos2 θ0

[
R01H (z − za) +

(
R01 + R̂12

)
H (z − ẑb)

+
(
R01 + R̂12 + R̂23

)
H (z − ẑc)

]
(21)

where the dependence of both the amplitudes and the predicted depths on p is implied. The
shallowest reflector is correctly located at za (since the velocity down to za was correct) but the
deeper reflectors are mislocated at depths

ẑb = za + (zb − za)
ζ1

ζ0
(22)

andẑc = ẑb + (zc − zb)
ζ2

ζ0
. (23)

Inserting Eq. (21) into the leading order imaging series will result in a shift of the two mislocated
interfaces to depths

ẑLOIS
b = ẑb + 2(ẑb − za)R01 (24)

ẑLOIS
c = ẑc + 2(ẑb − za)R01 + 2(ẑc − ẑb)(R01 + R̂12). (25)
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Eq. (24) is the approximation to zb that is leading order in R01. We can show that Eq. (25) is the
approximation to zc that is leading order in the amplitudes of the scattered field. Equations (22)
and (23) can be combined to give

zc = za + (ẑb − za)
ζ0

ζ1
+ (ẑc − ẑb)

ζ0

ζ2
(26)

and then the slowness ratios can be expanded as series in the reflection coefficients where

ζ0

ζ1
=

1 + R01

1−R01
= 1 + 2R01 + 2R2

01 + 2R3
01 + . . . , |R01| < 1

ζ0

ζ2
=

(
1 + R01

1−R01

)(
1 + R12

1−R12

)

= 1 + 2R01 + 2R12 + 2R2
01 + 2R2

12 + 4R01R12 + . . . , |R01| < 1, |R12| < 1. (27)

Substituting these expressions into Eq. (26) gives

zc = ẑc + 2 (ẑb − za)
[
R01 + R2

01 + R3
01 + . . .

]

+ 2 (ẑc − ẑb)
[
R01 + R12 + R2

01 + R2
12 + 2R01R12

+R3
01 + R3

12 + 2R01R
2
12 + 2R2

01R12 + . . .
]

(28)

The shift calculated by the leading order imaging series (Eq. 25) is an approximation to the series
in Eq. 28 to leading order in the data’s amplitudes. The approximation reduces to

(ẑb − za)R01 + (ẑc − ẑb)(R01 + R̂12) ≈ (ẑb − za)
[
R01 + R2

01 + R3
01 + . . .

]

+ (ẑc − ẑb)
[
R01 + R12 + R2

01 + R2
12 + 2R01R12 + . . .

]
(29)

where we observe that leading order in the amplitudes of the scattered field, in general, implies
non-linearity in the reflection coefficients:

R̂12 = T01R12T10 = R12 + R2
01R12. (30)

The leading order approximation to the shift of the reflector at ẑc contains contributions that are
linear and cubic in the reflection coefficients. For deeper reflectors, these contributions will be of
increasingly higher order due to the transmission coefficients in the measured scattered field. It is
to be expected that the leading order approximation will deteriorate for deeper reflectors due to
the fact that the shift is a function of approximations (truncated geometric series) at all shallower
reflectors. Higher order imaging terms are expected to improve the approximation.

Figures 3 and 4 illustrate the results for two choices of model parameters given in Table 1. In the
first example, the layer velocity c1 > c0 and in the second example, c1 < c0 by the same amount
(roughly 13%). As a result, the first term in the series “under-corrects” the deeper reflectors in Fig.
3 and “over-corrects” them in Fig. 4. In both cases, the leading order imaging series (computed
analytically) shifts the mislocated interfaces closer to their true depths. It is interesting to note
that, in the second example, αLOIS positions the reflectors a small distance shallower than their
actual depths, whereas the first term placed them a much greater distance deeper. Therefore, the
sign of the depth error can change. The leading order imaging series has the effect of flattening
image gathers closer to their true depths than a current linear imaging algorithm using the reference
velocity.

In the next section we will study the impact of violating the assumption that internal multiples
have been removed.
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Layer velocities (m/sec) Interface depths (m)
c0 c1 c2 za zb zc

Fig. 3 1500 1700 1800 100 140 170
Fig. 4 1500 1300 1600 100 140 170

Table 1: Model parameters corresponding to the results in Figs. 3 and 4.

5 The impact of internal multiples on the leading order imaging
series

The strategy of isolating task-specific subseries of the inverse series that achieve important seismic
processing objectives has proven to be a successful one (7). As part of this strategy, subseries
algorithms are applied in sequence using the output from a preceding algorithm as input to the
current one. While progress is being made in extending the inverse scattering internal multiple
attenuation algorithm (9) towards an internal multiple removal algorithm (as described in this
report), the current high-water mark in multiple attenuation when the Earth model is unknown is
free-surface multiple removal and internal multiple attenuation.

The scattered field that includes three primary reflectors and a first order internal multiple that
has reverberated in the first layer can be written analytically as

D(r;ω) =
iω

4π

∫ ∞

0

(
R01 + R̂12e

2iωζ1(zb−za) + R̂IMe4iωζ1(zb−za)

ζ0

+
R̂23e

2iω[ζ1(zb−za)+ζ2(zc−zb)]

ζ0

)
eiωζ0(2za−zs−zg)J0(ωpr)pdp. (31)

The amplitude of the internal multiple is

R̂IM(p) = T01R12R10R12T10 = −T01R
2
12R01T10 (32)

which, after application of the inverse scattering internal multiple attenuation algorithm is reduced
to (10)

R̂IM(p) = −T01R
2
12R01T10(1− T01T10) (33)

For this example, the first term in the series is

α1(z, p) =− 4 cos2 θ0

[
R01H (z − za) +

(
R01 + R̂12

)
H (z − ẑb)

+
(
R01 + R̂12 + R̂IM

)
H (z − ẑIM) +

(
R01 + R̂12 + R̂IM + R̂23

)
H (z − ẑc)

]
(34)

where ẑIM is the depth that the internal multiple is imaged at in the first term. The impact of
residual multiples on the imaging series is two-fold. First, the multiples themselves will be imaged
by the series and, second, they will impact the distance that events below them (or that arrive later
in time) are shifted by the imaging series. In the following examples, we illustrate the latter effect
only.
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Figure 3: (i) Travel time curves for three primaries. (ii) Depths predicted by the first term, za, ẑb and ẑc, and the
leading order imaging series, za, ẑLOIS

b and ẑLOIS
c . Model parameters are given in Table 1.

Figures 5 and 6 show the results of the leading order imaging series for the two specific models
described in Table 2 and in the presence of a residual first order multiple that has reverberated
between the interfaces at za and zb. It is interesting to note that in both these examples, the
impact of the residual internal multiple is to slightly improve the predicted depth of the reflector.
The fact that non-linear terms simultaneously act to remove internal multiples does not preclude
the possibility that internal multiples may, under some limited circumstances, improve the accuracy
of the imaging series terms. However, in a two-reflector case, internal multiples can not impact the
leading order imaging series because they arrive later in time (and deeper in reference depth) than
the mislocated reflector. This implies that internal multiples are not needed by the inverse series’
imaging terms. Clearly, a more careful analytical analysis is warranted here.
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Figure 4: (i) Travel time curves for three primaries. (ii) Depths predicted by the first term, za, ẑb and ẑc, and the
leading order imaging series, za, ẑLOIS

b and ẑLOIS
c . Model parameters are given in Table 1.

6 Band-limited numerical examples with random noise

A common question that arises when testing a new algorithm is: “What about noise?”. Generally,
noise in our input data is considered to be anything that is not explained by the underlying model.
For the algorithm currently under investigation, examples of noise are a residual source wavelet,
residual free-surface and internal multiples and anything that does not satisfy a 1-D constant density
acoustic wave equation. Rarely does noise improve the effectiveness of an algorithm although
sometimes white noise serves to stabilize a result.

Figures 7–9 illustrate the effect of different amounts of broadband random noise on the closed form
of the leading order imaging series (Eq. 9). As might be expected, random noise does not have a
significantly deleterious effect on the depths predicted by the leading order imaging series because
the accuracy of the result depends on integrals of the data in the overburden. An integral of a
random noise sequence will tend to be small.

It is anticipated that the series form of the algorithm (Eq. 6) would be more sensitive to random
noise than the closed form because the series form requires high-order derivatives which can tend

168



Leading order imaging series MOSRP04

Layer velocities (m/sec) Interface depths (m)
c0 c1 c2 za zb zc

Fig. 5 1500 2000 1900 100 125 170
Fig. 6 1500 1350 1900 100 125 170

Table 2: Model parameters corresponding to the results in Figs. 5 and 6 in which the impact on the leading order
imaging series of a first order internal multiple is analyzed.

to emphasize high frequency noise. (2) showed some robustness to random noise of a subseries
that simultaneously images and inverts primaries. Probably the most serious form of noise is a
coherent low frequency trend or DC shift. This noise will be accentuated by the integral of α1 in
the algorithm and will result in inaccurately predicted depths.

7 Conclusions

A condition has been derived which, when satisfied, demonstrates that the leading order imaging
series will improve the depths of reflectors over a linear imaging algorithm using the reference ve-
locity. For a two-reflector example, this condition is satisfied by the downgoing wave’s transmission
coefficient in the precritical regime. The impact of residual internal multiples on the imaging se-
ries has been studied using three-layer numerical examples. More analysis is needed in this area.
Finally, the effect of input data being contaminated by random noise has been shown to have only
a minor impact on the depths predicted by the leading order imaging series closed form. A closer
look at the effect of coherent noise, especially at low frequencies, is probably worthwhile.
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cIM
is

an improvement over ẑLOIS
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Figure 7: Velocity model (left) and input data (right) generated through reflectivity modelling. The time derivatives
of the slant stack data are displayed. The minimum and maximum frequencies are 0.125 Hz and 80 Hz, respectively.
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Figure 8: Data in Fig. 7 imaged using the reference velocity, c0, after being contaminated with various amounts of
random noise. Signal-to-noise ratios are displayed at the top of each panel. The depth derivatives of α1 are displayed.
The dashed yellow lines indicate the actual depths of the reflectors.

174



Leading order imaging series MOSRP04

0 20 40

100

150

200

250

300

350

400

θ
0
 = sin−1(pc

0
) (deg)

D
ep

th
 (

m
)

(a) S/N: ∞

0 20 40

100

150

200

250

300

350

400

θ
0
 = sin−1(pc

0
) (deg)

(b) S/N: 20

0 20 40

100

150

200

250

300

350

400

θ
0
 = sin−1(pc

0
) (deg)

(c) S/N: 10

0 20 40

100

150

200

250

300

350

400

θ
0
 = sin−1(pc

0
) (deg)

(d) S/N: 5

Figure 9: Data in Fig. 7 imaged using the leading order imaging series after being contaminated with various
amounts of random noise. Signal-to-noise ratios are displayed at the top of each panel. The depth derivatives of
αLOIS are displayed. The dashed yellow lines indicate the actual depths of the reflectors.
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Inverse scattering series for vertically and laterally varying media:
application to velocity independent depth imaging

Fang Liu, Arthur B. Weglein, Kristopher A. Innanen and Bogdan G. Nita

Abstract

In this paper we consider the portion of the inverse scattering series, as applied to seismic
reflection data, that is responsible for imaging, with emphasis on the structures of the imaging
algorithms associated with a laterally varying earth. We approach the problem by analyzing the
simplest possible multidimensional case: a single-parameter acoustic medium that varies both
laterally and in depth. Manipulation and solution of inverse scattering series terms, for the
above actual medium and using a homogeneous acoustic reference medium, leads to expressions
for imaging in 2D media independent of the actual velocity model. Portions of the subseries are
expressed as interpretable closed-form subsets of the full non-linear multidimensional reflector
location machine. These portions are describable as being: (1) leading- and/or high-order
in terms of response to medium contrast, (2) high-order in terms of correction in the depth
coordinate, and (3) low-order in terms of correction of the lateral coordinate. Numerical tests
on models that vary smoothly in the lateral coordinate are illustrated and discussed as providing
growing evidence of the efficacy of multidimensional imaging capability of the inverse scattering
series.

1 Introduction

The inverse scattering series is a comprehensive theory for the estimation of Earth medium pa-
rameters from reflected wave field measurements, with the capability for individual achievement
of many externally-defined processing objectives, each without the traditional need for subsurface
information. Velocity-independent algorithms have been derived from the inverse scattering series
for free-surface multiple removal, internal multiple attenuation, imaging or reflector location, and
parameter inversion or target identification (Weglein et al., 2003). Freedom from the requirement
for an adequate velocity model is attractive especially for cases involving complex media, or, alter-
natively, media underlying complex boundaries. In this paper, we focus on aspects of this theory
as it pertains to imaging in a laterally- and vertically-varying medium.

We begin with a word on the context of the research. Tasks and issues associated with struc-
tural determination, without knowing the medium, differ vastly depending on, for instance, the
dimension-of-variation and number of velocities that are required for imaging. Hence, a staged
approach and isolation-of-tasks philosophy is essential. We begin by, first, acquiring insight into
the mechanisms of an algorithm, and then developing practical algorithms that incorporate more
complete models.

Our non-linear methods engage the data in what we often refer to as inter-event communication
– conversations, as it were, that work to locate and invert for material property contrasts without
prior medium information. The nature of these conversations as we currently cast them is variable
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(see, for instance, Zhang and Weglein, 2005) depending on the model type. The conversations
ascribed to, and utilized for, a single-parameter acoustic medium will therefore in principle differ
from those expected by elastic data. Many similarities and repetitions of mathematical patterns
have been found to occur, however.

This means we benefit from a staged, isolationist means of developing these non-linear methods for
processing primaries, that individually reveals elements of the complexity of the full problem. The
stages for primaries include (1) a 1D earth with one parameter (typically velocity) as a function of
depth, and a normal incidence wave; (2) a 1D earth with one parameter subsurface and multi-offset
data, i.e., one shot record; (3) a 2D earth with one parameter, velocity, varying in x and z, and a
suite of shot records; (4) a 1D acoustic earth with two parameters varying, velocity and density,
one propagation velocity, and one shot record of PP data, and (5) a 1D elastic earth, two elastic
isotropic parameters and density, and two wave speeds, for p and s waves, and multi-component
acquisition corresponding to PP, PS, SP, and SS shot record data collected. Some of these tasks will
be recognizable as being in our history; some of them are discussed in the present report. Within
this framework the current paper of course is involved with (3). The lessons gleaned will lead to
increased numeric tests and carefully-chosen field data tests; it is worth emphasizing beyond this,
however, that a future synthesis of these individual lessons is a major goal.

To work towards understanding this aspect of non-linear imaging, i.e., the mechanisms of 2D
reflector correction, we build on the work of Shaw et al. (2004) and Shaw (2005). They have
brought the analysis and development of the leading order imaging subseries for vertically-varying
media through a set of steps culminating in an algorithm that has a startling mixture of power and
simplicity. These steps are, loosely:

1. The explicit derivation (up to third-order), through integration-by-parts, of inverse scattering
series terms specifically geared to reflector location.

2. The identification of patterns within these terms that leads to the postulate of the form of
the n’th term in the leading order imaging subseries.

3. The summation of this infinite series to closed-form.

The terms responsible for imaging are also visible and available in the inverse scattering series
for laterally- and vertically-varying perturbations (Liu et al., 2004); however, the mathematics is
considerably more involved. We are currently at an intermediate stage in the process of developing
the above steps. This paper reports on a way-point in that development, and details some of
the similarities and differences from the purely vertically-varying case, and other complexities and
opportunities that arise for a multi-D Earth. We derive, explicitly, portions of the second, third,
and fourth order terms, and combine them via an interpretation of their behavior that arises from
the lessons gleaned from the 1D case. Portions of these terms are demonstrated to sum to closed
form.

Full (infinite) order syntheses of terms acting in the depth direction are combined and seen to form
low-order terms acting in the lateral direction. We thus expect efficacy of these chosen terms on
models that vary smoothly in the lateral direction; we demonstrate this numerically and comment
on plans for expanding to rapidly-varying Earth models.
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The body of this paper is short and straightforwardly organized. Sections 2–4 contain sequential
presentations of the derived forms (full and/or partial) for the 2nd–3rd 1st–3rd order terms, of a
wavespeed perturbation that is permitted variation in lateral and vertical coordinates. Section
5 describes the organization and summation of subsets of the previously derived terms; section
6 describes the processing flow from data to our illustrated and interpreted output. Although
presented concisely in this paper, these derivations contain relatively involved mathematics; much
of the detail is included (along with several useful notations and conventions) in an extensive set
of appendices. Relevant appendices are referred to within the body of the paper.

2 Inversion results for α1

The inverse scattering series as we intend to analyze it in this paper is an order-by-order prescrip-
tion for the solution for the wavespeed perturbation in terms of a homogeneous acoustic reference
medium and measurements of the scattered wave field on a measurement surface. Omitting deriva-
tion (see, for instance, Weglein et al., 2003), the requisite form of the series equations is

D(xg, zg, xs, zs, ω) =
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V1(x′, z′)G0(x′, z′, xs, zs, ω), (1)

at first order,

0 =
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V2(x′, z′)G0(x′, z′, xs, zs, ω)

+
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V1(x′, z′)

×
∫ ∞

−∞
dz′′

∫ ∞

−∞
dx′′G0(x′, z′, x′′, z′′, ω)V1(x′′, z′′)G0(x′′, z′′, xs, zs, ω),

(2)

at second order,

0 =
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V3(x′, z′)G0(x′, z′, xs, zs, ω)

+
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V1(x′, z′)

×
∫ ∞

−∞
dz′′

∫ ∞

−∞
dx′′G0(x′, z′, x′′, z′′, ω)V2(x′′, z′′)G0(x′′, z′′, xs, zs, ω)

+
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V2(x′, z′)

×
∫ ∞

−∞
dz′′

∫ ∞

−∞
dx′′G0(x′, z′, x′′, z′′, ω)V1(x′′, z′′)G0(x′′, z′′, xs, zs, ω)

+
∫ ∞

−∞
dz′

∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V1(x′, z′)

×
∫ ∞

−∞
dz′′

∫ ∞

−∞
dx′′G0(x′, z′, x′′, z′′, ω)V1(x′′, z′′)

×
∫ ∞

−∞
dz′′′

∫ ∞

−∞
dx′′′G0(x′′, z′′, x′′′, z′′′, ω)V1(x′′′, z′′′)G0(x′′′, z′′′, xs, zs, ω),

(3)
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at third order, etc., in which

Vn(x, z) =
ω2

c2
0

αn(x, z), (4)

and αn(x, z) is the n’th order component of the wavespeed perturbation α(x, z) =
∑

n αn(x, z),
whose reconstruction is the aim of the inverse scattering series. This definition of the perturbation
V corresponds to the single-parameter acoustic framework involving wavespeed variations only.

The linear term α1 may be solved from data:

˜̃α1(km, kz) = − 4k2
z

k2
z + k2

m

˜̃
D

(
km

2
, zg,−km

2
, zs, ω

)
. (5)

where ˜̃
D is the data in the frequency wave number domain. See Appendix C for a brief derivation,

and a description of various ways of expressing the data D.

3 Inversion results for α2

In the derivation of α2 (see, for instance, Liu et al., 2004), begins to arise some of the complexity
characteristic of this multidimensional Earth problem. As in the case of the linear term, in this
section we merely present the result, referring those interested to Appendix D for a complete
analysis. (See also Appendix B for an introduction to the derivation and analytical strategy used.)
The second-order term α2 is computed using α1 via equation (69). In the final result, α2 is split
into 3 parts: α2 = α2,1 + α2,2 + α2,3. The first two terms are expressed in the (x, z) domain as

α2,1(x, z) = −1
2
α2

1(x, z)− 1
2

∂α1(x, z)
∂z

z∫

−∞
α1(x, u)du, (6)

and

α2,2(x, z) =
1
2

∂α1(x, z)
∂x

z∫

−∞
du

u∫

−∞
dv

∂α1(x, v)
∂x

. (7)

Equation (6) is identical to the α2 equation obtained by Shaw et al. (2004). From a mechanical
point of view, we recall from Shaw’s interpretation that the presence in the inverse scattering series
of the weighted n’th partial derivative of α1 with respect to z was indicative of the n’th term in a
series to correct the location of a reflector in depth. In equation (6) we clearly see this z-corrective
behavior in the multidimensional case also. What appears in this analysis for the first time is a
weighted first partial derivative with respect to x, in equation (7). We regard this term, being a low
order derivative with respect to the lateral coordinate of α1, as a low order term in the construction
of laterally corrective function. It is intriguing to note that the coefficient of this lateral corrector
involves depth integrals, over z.
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The last term is expressed in the (km, z) domain:

α̃2,3(km, z) =
1

8π2

∫ ∞

−∞
dk1

∞∫

−∞
dz1α̃1 (0.5km − k1, z1)

z1∫

−∞
dz2α̃1 (k1 + 0, 5km, z2)

× ξ̃2

(
km, k1,

z1 + z2

2
− z,

z1 − z2

2

)
,

(8)

where ξ̃2 is defined as follows:

ξ̃2 (km, k1, ε0, ε1) =

∞∫

−∞
ei(ε0+ε1)kzdkz

(
i
k2

z + k2
m

u1
ei4ψ − ikz +

ε1a1

2

)

a1 = k2
m − 4k2

1 u1 = sgn(kz)
√

k2
z + a1 4ψ = ε1(u1 − kz),

(9)

and is considered to be involved in coupled tasks (c.f. Innanen, 2003). We focus on separated
imaging tasks in this paper.

4 Inversion results for α3

Considerably more terms are present in α3 (the third order term in the inverse scattering series).
Merging and regrouping the terms derived in in equation (117) and (119), we may write the third
order single-parameter inverse as α3 = α3,1 +α3,2 +α3,3 +α3,4. The first three terms are expressible
in the (x, z) domain as:

α3,1(x, z) =
3
16

α3
1 +

1
8

∂2α1

∂z2




z∫

−∞
α1(x, u)du




2

+
3
4

∂α1

∂z
α1

z∫

−∞
α1(x, u)du

− 1
8

∂α1

∂z

z∫

−∞
α2

1(x, u)du− 1
16

z∫

−∞
du

z∫

−∞
dv

∂α1(x, u)
∂u

∂α1(x, v)
∂v

α1(u + v − z),

(10)

180



Multidimensional inverse scattering series: application to imaging MOSRP04

α3,2(x, z) = −1
4

∂

∂x


α2

1 +
∂α1

∂z

z∫

−∞
α1(x, u)du


F (x, z)

+
1
8

∂α1

∂x

∂

∂x

z∫

−∞
du

u∫

−∞
dvα2

1(x, v) +
1
8

∂α1

∂z

z∫

−∞
du




u∫

−∞
dv

∂α1(x, v)
∂x




2

+
1
4
α1(x, z)




z∫

−∞
du

∂α1(x, u)
∂x




2

+
1
4

∂α1

∂x

z∫

−∞
du


∂α1(x, u)

∂x

u∫

−∞
dvα1(x, v)




+
1
4

∂2α1(x, z)
∂x2




z∫

−∞
α1(x, u)du




2

+
1
2
α1(x, z)




z∫

−∞
duα1(x, u)


 ∂2

∂x2




z∫

−∞
duα1(x, u)




+
1
16

z∫

−∞
du

∂α1(x, u)
∂x

∂

∂x

z∫

−∞
dv(z − v)α1(x, v)α1(u + v − z)

+
1
4

z∫

−∞
du

∂α1(x, u)
∂x

∂2

∂x2

z∫

−∞
dvα1(x, v)α1(x, u + v − z)

and
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α3,3(x, z) = − 1
32

∂2α1(x, z)
∂x2

z∫

−∞
du

u∫

−∞
dv

∂2

∂x2




v∫

−∞
dwα1(x,w)




2

+
1
32

α1(x, z)
(

∂F (x, z)
∂x

)2

− 1
8




z∫

−∞
du

∂F (x, u)
∂x


 ∂2

∂x2


α1(x, z)

z∫

−∞
duα1(x, u)




+
1
8

∂α1(x, z)
∂x

z∫

−∞
du


∂F (x, u)

∂x

z∫

−∞
dv

∂α1(x, v)
∂x




+
1
16

∂2α1(x, z)
∂x2

z∫

−∞
du







u∫

−∞
dvα1(x, v)


 ∂F (x, z)

∂x




+
1
8

∂

∂x

(
∂α1

∂x
F 2(x, z)

)
− 1

8
∂α1

∂x

∂

∂x

z∫

−∞
du

u∫

−∞
dv





v∫

−∞
dw

∂α1(x,w)
∂x





2

− 1
16

α1(x, z)
{

∂F (x, z)
∂x

}2

− 1
8

∂2α1(x, z)
∂x2

z∫

−∞
du





u∫

−∞
dvα1(x, v)





∂F (x, u)
∂x

+
1
16

∂2α1(x, z)
∂x2

∂2

∂x2

z∫

−∞
du

u∫

−∞
dv




v∫

−∞
dwα1(x,w)




2

− 1
16

z∫

−∞
du

∂2α1(x, u)
∂x2

∂2

∂x2

z∫

−∞
dv(z − v)α1(x, v)α1(x, u + v − z)

+
1
16

z∫

−∞
du(z − u)

∂α2
1(x, u)
∂x2

∂

∂x

z∫

−∞
dv(z − v)

∂α1(x, v)
∂x

α1(x, u + v − z)

+
1
16

z∫

−∞
du(z − u)

∂α1(u)
∂x

∂

∂x

z∫

−∞
dv(z − v)C(v)

∂α1(x, u + v − z)
∂x

where

F (x, z) =

z∫

−∞
du

u∫

−∞
dv

∂α1(x, v)
dx

dv. (11)

The complexity of the third order terms has clearly and not unexpectedly been enhanced with the
addition of a lateral dimension to the variability of the perturbation. Nevertheless, the lessons of
the 1D case lend an interpretability to them in particular with respect to reflector location. First,
as with the second order case, an exact reproduction of all the 1D terms (i.e. alterations with
respect to depth z) has occurred in α3,1. This suggests, as we further develop in the following
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section, that the 1D inverse scattering series terms carry over to the 2D case; the depth-direction
imaging and inversion terms behave, in other words, as the zero’th order part of an infinite series
for the lateral correction of the linear model.

The third-order terms appear as first- and second-derivatives of α1 and more complex quantities
with respect to both x and z. The operations (e.g. “n’th derivative of α1 times n’th power of
the integral of α1”) that have led to imaging (or reflector location) behavior in 1D recur, but
the quantities being operated on are of greater complexity. In Appendix A of Innanen (2005), it
is noted that locator-like operations acting on locator-like inputs is characteristic of non leading-
order imaging terms (whereas at leading-order terms are locator-like operations acting on the
linear inverse). Here we see that they are also characteristic of higher dimensionality. In general,
experience has shown that this is endemic of any subseries which we expect to involve cascaded
infinite series (Shaw and Weglein, 2004).

Finally, in addition to imaging/inversion operations acting on subseries that involve α1, rather than
α1 alone, we notice the appearance of cross-terms between derivatives in z and in x. Such terms
will naturally be sensitive to coupling between the lateral and vertical rates of change in α1, and
work to alter locations as such.

The last third-order term is, as in the second order case, most conveniently expressed in the (km, z)
domain:

α̃3,4(km, z) =
1

128π3

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3α̃1(0.5km − k1, z1)α̃1(k1 − k2, z2)

× α̃1(k2 + 0.5km, z2)ξ̃3

(
km, k1, k2,

z1 + z3

2
− z,

|z1 − z2|
2

,
|z2 − z3|

2

)

+
1

8π2

∞∫

−∞
dk1

∞∫

−∞
dz1α̃2 (0.5km − k1, z1)

∞∫

−∞
dz2α̃1 (k1 + 0, 5km, z2)

× ξ̃2

(
km, k1,

z1 + z2

2
− z,

|z1 − z2|
2

)
,

(12)

where ξ̃3 is defined as:

ξ̃3 (km, k1, k2, ε0, ε1, ε2) =

∞∫

−∞
dkze

ikz(ε0+ε1+ε2)×
((

k2
z + k2

m

)
ei4ψ

u1u2
− k2

z − i
ε1a1 + ε2a2

2
kz −

(
k2

m + 2
(
k2

1 + k2
2

)2 − (ε1a1 + ε2a2)
2

8

))

a1 = k2
m − 4k2

1 a2 = k2
m − 4k2

2

u1 = sgn(kz)
√

k2
z + a1 u2 = sgn(kz)

√
k2

z + a2

4ψ = ε1(u1 − kz) + ε2(u2 − kz)

(13)

and ξ̃2 had already been defined in equation (9). We again tentatively ascribe mixed imag-
ing/inversion tasks to this term and focus instead on its brethren.
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5 Patterns and closed-forms

In this section we accumulate sets of terms that have aggregate meaning in light of our under-
standing of the 1D imaging subseries. We have stated above that, for instance, there is a complete
recurrence of the depth-sensitive terms found in the 1D/1.5D analysis (discussed by Shaw et al.,
2004).

Generally our approach has been to explicitly manipulate and compute terms in the inverse scat-
tering series until patterns emerge that permit the prediction of certain subclasses of subsequent
series terms. In Appendix G we present a component of the fourth order terms of the series; at
present however, with second and third order components of α computed, there is sufficient infor-
mation to identify and move forward with a set of patterns. Here we itemize these patterns and
the closed-forms that result:

A closed form for the 0’th order lateral corrector

In both α2 and α3 inversion results appear terms (see equation (6) and (10)) that are in essence
identical to expressions obtained under the 1D earth assumption (the only difference is an extra
lateral variable x). As a result, not only may we write down the n’th term of what we refer to as
the “most significant” part of the multidimensional imaging subseries, we may also write down a
closed-form version of it:

αLOIS(x, z) = α1


x, z − 1

2

z∫

−∞
α1(x, u)du


 (14)

The first- and higher-order lateral corrector terms (involving lateral derivatives as discussed above),
when collapsed in the correct way may be added to this term.

A closed form for part of the 1st order lateral corrector

We demonstrate the basic form of these to-be-added lateral correction terms with a look at the
first order, i.e. those terms that involve first derivatives of α1 with respect to x. Notice that α2,2

in equation (7) and the first term in α3,2 involve a depth integral of the lateral rate of change of
α1, multiplied by the first derivative (w.r.t. x) of a growing set of terms akin to the 1D depth
imaging series. Using our experience with the 1D imaging mechanisms, we consider that such a
weighted first derivative of α1 with respect to x constitutes a first-order lateral correction. Calling
the (growing) set of depth terms under the derivative A(x, z), a lateral corrector of the form

1
2

∂A(x, z)
∂x

z∫

−∞
du

v∫

−∞
dv

∂α1(x, v)
∂x

is produced. We continue to analyze and incorporate terms involving higher-derivatives in the
lateral coordinate.
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Incorporating non-LOIS imaging components

The leading order imaging subseries is (as its name implies) not the full imaging subseries. There
are higher order terms left out, whose absence will be marked at large contrasts. Innanen (2005)
works to accommodate higher order imaging and inversion terms by designing generating functions
that cast a wider net for terms that operate on primaries. Consider the 1D leading order imaging
subseries:

∞∑

n=0

(−1/2)n

n!
dnα1(z)

dzn




z∫

−∞
duα1(u)




n

.

The first step to higher-order imaging as such is to incorporate terms like −1
8

dα1(z)
dz

∫ z
−∞ duα2

1(u)
(in α3). The higher-order imaging subseries including these kinds of terms is:

α1


z − 1

2

z∫

−∞
du

α1(u)
1− 1

4α1(u)


 . (15)

This arises from a summation of terms that involve increasing powers of α1 under the integrals for
the series coefficients.

Avoiding amplitude-related components at high-order

The work of Innanen (2005) incorporates higher order imaging terms, inversion (amplitude) terms,
and mixed-task elements. It is, in general, less straightforward to uncouple imaging (reflector
location) tasks from inversion (amplitude) tasks at high order, however. We present a means to
separate tasks under these conditions; the numerical examples shown below utilize these forms. To
achieve high-order imaging only (not both imaging and inversion), it turns out that the integral
in equation (15) should be computed up to the location of the incorrect reflector, not the correct
reflector. In other words (and somewhat glibly), we must operate in the domain of the input
variable and not the output variable. We implement the formula

αHOIS


z +

1
2

z∫

−∞
du

α1(u)
1− 1

4α1(u)


 = α1(z),

to this end.

6 Processing flow and numerical examples

In this section we present numerical tests on progressively complicated geological models. The
major input to our algorithms are shot gathers with direct arrivals being removed, just like the
input data in current exploration. In our current implementation, we use the portion of data
corresponding to kh = 0 so, in the computation of the linear inverse directly from the data (with a
homogeneous reference medium), the Fourier transform over xh is actually summing all the traces
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with the same mid-point together. This step is described in equation (41) in Appendix A, but
other choices (other than kh = 0) are, of course, possible. The linear inverse, computed as above
from the data and some specified removal of the data-redundancy, is then the input to all further
second-order operations, third-order operations, and beyond.

A fourth-order finite difference scheme is used to generate all the synthetic data for these examples.
First we generate the direct arrival using a homogeneous medium characterized by water speed, to
be used later to remove the direct arrivals for all shot gathers.

In our numerical examples, the source wavelet is the first derivative of Gaussian with peak frequency
about 28 Hz, the sampling interval in x is 4x = 5m, and the temporal sampling rate is 4t = 2ms.
Although the theory requires removal of the source wavelet, experience (as described in M-OSRP03)
has shown that the imaging algorithm is relatively insensitive to the presence of a wavelet of this
particular form. We therefore continue to use it for the sake of convenience. In using the closed
forms derived herein, data values away from the regular data grid are required. Our current
implementation uses Fourier methods for off-grid interpolation.

Figures 1–2 illustrate the geological models under numeric study, in order of increasing 2D com-
plexity and contrast. The models are designed to be horizontal at their lateral extremities, and
to undergo smooth variation within. We have designed the models to include horizontal interfaces
below the dipping interfaces so that the goal (correctly locating the horizontal reflectors) and er-
roneous deviations from this goal are easy to see. Figures 3–4 illustrate two typical shot gathers
created synthetically from the given models, and used as inputs to create α1(x, z), as described
above.

Figures 5–6 illustrate the various imaging results for model 1. On the left of figure 5 is the
linear inverse given a homogeneous reference medium. The first reflector is at its correct location
(correct locations are indicated in red); the second and third reflectors are mis-located, as the
primary has propagated in a perturbed regime in the medium. Furthermore, the right extremity
of these reflectors are “pulled up”, because they experience the high velocity zone to a greater
extent. The errors are not large, since the perturbations (deviations of the actual medium from the
reference) are kept relatively small. On the right is the 2D leading-order imaging subseries (LOIS),
which is equivalent to Shaw et al. (2004) in the depth-coordinate, and utilizes low-order corrective
mechanisms in the lateral-coordinate. The left and right sides of figure 6 compare the leading order
(LOIS) and higher-order/large contrast (HOIS) imaging algorithms; little difference is noted at
these levels of contrast. Both effectively correct the errors of the locations of the reflectors that are
due to smooth lateral-variability of the model.

Figures 7–8 illustrate similarly the various imaging results for model 2. Here, because of the
large contrasts involved, the linear inverse α1 assuming a homogeneous reference medium contains
marked location errors (correct locations are again overlain in red). Although it is an improvement
over linear imaging, the leading-order imaging series (LOIS) cannot accommodate these levels of
contrast and also can be seen to contain location errors. The high-order/large contrast version of
the algorithm handles the contrasts well, and a result close to the actual depths is generated.

Imaging algorithms that accommodate different levels of contrast in discontinuities in depth of the
Earth model, but are low-order approximations in their capacity as correctors of lateral location,
are here clearly demonstrated to operate with efficacy when the lateral variability of the model is
smooth. We expect these low-lateral-order approximations to require extension as the models we
implement them with vary more rapidly in x.
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Figure 1: Velocity model 1.

Figure 2: Velocity model 2.
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Figure 3: A typical shot gather collected for Model 1 (the direct arrival has been removed).
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Figure 4: A typical shot gather collected for the Model 2 (the direct arrival has been removed).
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Figure 5: Model 1 leading-order imaging results: (left) the linear inverse; (right) leading-order imaging subseries

with low-order lateral correction.

Figure 6: Model 1 high-order imaging results: (left) the leading-order correction; (right) the high-order correction.
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Figure 7: Model 2 leading-order imaging results: (left) the linear inverse; (right) leading-order imaging subseries

with low-order lateral correction.

Figure 8: Model 2 high-order imaging results: (left) the leading-order correction; (right) the high-order correction.

7 Conclusions

We present a formalism for the nonlinear imaging and inversion of 2D wave field data over a
medium with vertically and laterally varying parameters. The development is motivated by, and
follows closely, the co-development of 1D (depth-varying) methods. We further present a form of
this second order algorithm that directly mirrors the purposeful casting of the terms as those which
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correspond separately and exclusively to tasks of imaging and inversion. These can be seen to
compare closely to their 1D brethren. Numerically we see encouraging results given an unknown
overburden with lateral variation.
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Appendix A: Notations and conventions

We use x and z to denote the lateral and vertical coordinates in space, respectively. t is used to
denote the time. The Fourier conjugate of t is ω. The Fourier transform between x and its Fourier
conjugate km is defined as:

f̃(km) =

∞∫

−∞
dxe−ikmxf(x) f(x) =

1
2π

∞∫

−∞
dkmeikmxf̃(km) (16)

The Fourier transform between z and its Fourier conjugate kz is defined as:

f̃(kz) =

∞∫

−∞
dzeikzzf(z) f(z) =

1
2π

∞∫

−∞
dkze

−ikzz f̃(kz) (17)

We use the tilde sign on top of a function to denote its Fourier transform throughout this note. A
single tilde sign means that this expression is in (km, z) domain, double tilde sign means that this
expression is in (km, kz). Because α1 is a function of (x, z), time is not explicitly present in α1 and
higher order terms α2, α3, . . .. The only place where time is involved is when α1 is calculated from
measured data, which is a function of time.

A very useful concept to simplify inverse scattering terms is the permutation sum. It will be defined
as follows: For a function of 2 variables, like f(A,B), we define the permutation sum

∑¯ as:

∑̄
f(A,A) = f(A,A)

∑̄
f(A,B) = f(A,B) A 6= B

(18)

For a function of 3 variables, like f(A, B,C), we define the permutation sum
∑¯ as (assuming A,

B, C are mutually distinct):

∑̄
f(A,A, A) = f(A,A, A)

∑̄
f(A,A, B) = f(A,A, B) + f(A,B,A) + f(B,A, A)

∑̄
f(A,B, C) = f(A,B,C) + f(B, C, A) + f(C, A,B)

+ f(A,C, B) + f(B,A, C) + f(C,B,A)

(19)

Lots of derivatives and integrals over x and z will be used in our manipulation of the inverse
scattering series terms. The following notations are suggested for conciseness: αx def= ∂α

∂x , αz def= ∂α
∂z ,

αx+z def= ∂2α
∂x∂z , α−z =

∫ z
−∞ duα(x, u), α−2z =

∫ z
−∞ du

∫ u
−∞ dvα(x, v). These notations allow us to

simply express most of the integrals in the derivation while retaining our ability to make physical
interpretations of the terms.

Using superscripts to denote derivatives will cause confusion with powers. That’s why in many
places in the derivation procedure, the square of A is often written as AA rather than A2. If we
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assume both A B, and C are functions of x and z, then ∂(AB)
∂z = ∂A

∂z B + A∂B
∂z can be expressed in

the short hand notation as:

[AB]z = AzB + ABz. (20)

Likewise ∂(AB)
∂x = ∂A

∂x B + A∂B
∂x can be expressed as:

[AB]x = AxB + ABx. (21)

With integration by parts, we have the following identity:
∫ z

−∞
A(u)B(u)du =

(∫ z

−∞
A(u)du

)
B(z)−

∫ z

−∞

(∫ z

−∞
A(v)dv

)
B′(u)du,

which can be very conveniently expressed in the following short-hand notation:

[AB]−z = A−zB − [
A−zBz

]−z
. (22)

Of course, there is another way to do the integration by parts:
∫ z
−∞A(u)B(u)du = A(z)

(∫ z
−∞B(u)du

)
−

∫ z
−∞A′(u)

(∫ z
−∞B(v)dv

)
du. This may be expressed as

[AB]−z = AB−z − [
AzB−z

]−z
. (23)

A very useful equation is: [
A

[
A−z

]m]−z =
1

m + 1
[
A−z

]m+1
. (24)

This means:
z∫

−∞
A(u)

(∫ u
−∞A(v)dv

)m
du = 1

m+1

(∫ z
−∞A(u)du

)m+1
. It can be proved by car-

rying out the ∂
∂z operation on both sides, both the left- and right-hand-side will end up with:

A(z)
(∫ z
−∞A(u)du

)m
.

Another useful simplification of integrals is the following:

[
AB−z

]−z +
[
A−zB

]−z = A−zB−z (25)

which can be easily proved by taking the partial derivative over z on both sides.

Several popular rules for integration over δ-functions are summarized below:

∞∫

−∞
f(z)δ(z − z0) = f(z0) (26)

∞∫

−∞
f(z)δ′(z − z0) = −f ′(z0) (27)
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∞∫

−∞
f(z)δ′′(z − z0) = f ′′(z0) (28)

Rules mentioned above will be used over and over again in the derivation process. In order to make
clear which rule is used, we use the following notation:

· · · = −−→
(28) = · · ·

to denote that the simplification rule specified in equation (28) is being used to justify the equiva-
lence between the left and right-hand sides.

Inevitably, some integrals cannot be expressed in the form above. For example, the integral in the
third term that is responsible for internal multiple removal, we define some integral involved in the
higher-lower-higher relation (W-diagram), which is instrumental in the internal multiple algorithm
in the inverse scattering series:

IM1(A, B,C) =

z∫

−∞
duA(u)

z∫

−∞
dvC(v)B(u + v − z) (29)

IM2(A,B,C) =

z∫

−∞
duA(u)

z∫

−∞
dv(z − v)C(v)B(u + v − z) (30)

IM3(A,B, C) =

z∫

−∞
duA(u)

z∫

−∞
dv(z − v)2C(v)B(u + v − z) (31)

IM3X(A,B, C) =

z∫

−∞
du

∂2A(x, u)
∂x2

∂2

∂x2

z∫

−∞
dv(z − v)2C(x, v)B(x, u + v − z) (32)

IM4(A,B, C) =

z∫

−∞
du(z − u)A(u)

z∫

−∞
dv(z − v)C(v)B(u + v − z) (33)

IM4X(A,B, C) =

z∫

−∞
du(z − u)

∂A(u)
∂x

∂

∂x

z∫

−∞
dv(z − v)C(v)B(u + v − z) (34)
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Appendix B: Derivation strategies

The mathematics involved in computation of the multidimensional inverse scattering series is com-
plicated but can be made more straightforward with some simple conventions. This appendix
provides an overview and intuitive introduction to a particular and useful derivation convention.

We begin by reviewing the first order portions of the inverse scattering series, closely following
the development of, e.g., Weglein et al. (2003). The desired scattering potential V , which for our
purposes describes perturbations of wavespeed away from a constant background wavespeed c0:

V (x, z, ω) =
ω2

c2
0

α(x, z),

(in which α(x, z) = 1 − c2
0/c2(x, z) for a true wavespeed distribution c(x, z)), can be expressed in

terms which are first, second, third, ... order in data : α(x, z) =
∑∞

n=1 αn(x, z). The relationship
between various part of V , and corresponding part of α, can be summarized as:

Vn(x, z, ω) =
ω2

c2
0

αn(x, z), (n = 1, 2, 3, . . .)

The first order (linear) portion of the inverse scattering series is an exact relationship between V1

and the scattered field evaluated on the measurement surface (i.e. the data D). In the operator
form, this relationship is

G0V1G0 = D = G−G0. (35)

Next, consider the well-known α2 equation:

G0V2G0 = −G0V1G0V1G0

With n ≥ 3, the portion of α which is n-th order in data will contain considerably more terms. For
example, α3 contains three pieces:

G0V3G0 = −G0V1G0V1G0V1G0 −G0V2G0V1G0 −G0V1G0V2G0.

Generally speaking, for an arbitrary positive integer m, the number of corresponding m’th order
terms in the inverse series will depend on how many ways m can be expressed in terms of the
sum of smaller positive integers. For example, if m = 4, we can express 4 in 7 different ways:
4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2 = 1 + 3 = 3 + 1. That means α4 will
have seven pieces:

G0V4G0 =−G0V1G0V1G0V1G0V1G0 −G0V1G0V1G0V2G0 −G0V1G0V2G0V1G0

−G0V2G0V1G0V1G0 −G0V2G0V2G0 −G0V1G0V3G0 −G0V3G0V1G0.

In order to make clear where each piece comes from, we denote each piece differently. One approach
is to use newly defined functions. For example, we define k = ω/c0, and define the solution of the
following problem:

G0k
2FG0 = −G0k

2A1G0k
2A2G0
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as

F = SC2 (A1, A2)

In this general formulism, both A1 and A2 can be α1, α2, α3, . . .. For example, in the simplest
case: A1 = A2 = α1, we obtain: α2 = SC2 (α1, α1). Likewise, we define the solution of the following
equation:

G0k
2FG0 = −G0k

2A1G0k
2A2G0k

2A3G0

as

F = SC3 (A1, A2, A3)

Generally speaking, for an integer n ≥ 2, we define the solution of the following equation:

G0k
2FG0 = −G0k

2A1G0k
2A2 · · · k2AnG0

as

F = SCn (A1, A2, · · ·, An)

With the definitions above, we have:

α2 =SC2 (α1, α1)
α3 =SC3 (α1, α1, α1) + SC2 (α1, α2) + SC2 (α2, α1)
α4 =SC4 (α1, α1, α1, α1) + SC3 (α1, α1, α2) + SC3 (α1, α2, α1) + SC3 (α2, α1, α1)

+SC2 (α2, α2) + SC2 (α1, α3) + SC2 (α3, α1)

These functions not only differentiate terms, they also shorten the derivation process. For example,
SC2 can be derived once, and used repeatedly later.

One might notice that, for example, in the α4 term, all different permutations of (α1, α1, α2) are
involved. It is natural to ask if the sum of these similar looking terms possess some symmetry not
manifested in each individual term? The answer is yes, especially for the more significant portion
which is the only surviving term if the earth is indeed horizontal.

We define the permutation sum of SC as SC, for example, in the case of SC2, we define:

SC2 (A1, A2) =
∑̄

SC2 (A1, A2)

where
∑¯ acting on a function of 2 variables is defined in equation (18).

In the case of SC3, if we assume: A1 A2 , and A3 are different from each other, we define:

SC3 (A1, A2, A3) =
∑̄

SC3 (A1, A2, A3)

where
∑¯ acting on a function of 3 variables is defined in equation (19).
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Strictly speaking, SC2 is a function of (A1, A2), and can be expressed in (x, z), (km, z), or (km, kz)
domain. In this note, SC3 (without tilde above) means the representation in the (x, z) domain.

S̃C2 (with single tilde above) means the representation in the (km, z) domain. ˜̃SC2 (with double
tilde above) means the representation in the (km, kz) domain. If not specified, SC2 is assumed as
the function of (A1, A2).

For SC3, we use tilde sign to explicitly denote its domain, just like the case for SC2. If not specified,
SC3 is assumed as a function of (A1, A2, A3). Very similar logic applied to later functions.

With definitions above, α4 can written as:

α4 = SC4 (α1, α1, α1, α1) + SC3 (α1, α1, α2) + SC2 (α1, α3) + SC (α2, α2) (36)

Within one index n, especially when n is large, there remain many very different terms. We should
differentiate those terms further. Here we introduce another index m, with n ≥ m ≥ 1, to denote
how significant each term is. The reason behind this is that, in the equation to invert for SCn, we
will obtain a distribution behave like kn−1

z asymptotically in the kz domain. If the earth is 1D,
only the portion of the distribution which is of the order of kn−1

z is needed, the other portions will
be discarded by the sifting property of the δ-function (see Liu et. al. 2004). If the earth is not
1D, the other portions, which will be separated into lower powers of kz as: kn−2

z , kn−3
z , · · ·, k0

z . We
can use 1 ≤ m ≤ n to denote the piece associated with kn−m

z . We use m = n + 1 to denote the
remaining parts.

Inside each (n,m), there are still very different looking terms. For example, in the internal multiple
removal, only the part of the third term in which the 3 scatters satisfy the higher-lower-higher
relation is necessary: z1 ≥ z2 ≤ z3. How many high-low relations exist between n scatters:
z1, z2, · · ·, zn? There are 2n−1 of them because there 2 possible relations between 2 adjacent scatters
zj and zj+1, we can either have: zj ≥ zj+1 or zj ≤ zj+1. That’s why we introduce a third index l,
1 ≤ l ≤ 2n−1 to further differential each terms. In the current classification scheme, the equation
to calculate the index l is:

l = (d1d2 · · · dn−1)b + 1 (37)

where (d1d2 · · · dn−1)b is an integer in binary representation, it’s j-th digit, dj is either 0 or 1
depending whether or not zj ≥ zj+1.

In summary, we systematically classify the function SCn into SCn,m,l, where 1 ≤ m ≤ n+1 denotes
the significance, with m = 1 defined as the more significant. The last index 1 ≤ l ≤ 2n−1 denotes
where he high-low relationship between adjacent scatters.
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Appendix C: Derivation of α1

In order to solve α1 (or equivalently V1) in equation (35), we apply the causal Green’s functions
for homogeneous media (following Morse and Feshbach, 1953, Chapter 7 Vol. 1) :

G0(xg, zg, xs, zs, ω) =
1
2π

∞∫

−∞
dkg

eikg(xg−xs)eiqg |zg−zs|

2iqg
, (38)

where kg is the Fourier conjugate to xg, and qg = sgn(ω)
√

(ω/c0)
2 − k2

g .

Equation (35) can be solved by applying a Fourier transform:
∫∞
−∞ dxg

∫∞
−∞ dxse

iksxs−ikgxg , over
the lateral source and receiver coordinates to obtain α1. (Note that the “sign convention” of the
Fourier transform is different for the source and geophone coordinates. See Clayton & Stolt 1981
for detail of this choice of Fourier transform) The solution of equation (35) with the constraint
kh = kg + ks = 0 is:

˜̃α1(km, kz) = − 4k2
z

k2
z + k2

m

˜̃
D

(
km

2
, zg,−km

2
, zs, ω

)
, (39)

where, following the conventions discussed in Appendix A, ks is the Fourier conjugate to xs, and

qs = sgn(ω)
√

(ω/c0)
2 − k2

s ,

with
ω = sgn(kz)

c0

2

√
k2

z + k2
m,

and kz = qg + qs. The quantity ˜̃α1(km, kz) is the double Fourier transform of α1(x, z) over both

x and z coordinates, and ˜̃
D is the double Fourier transform of D(xg, zg, xs, zs, ω) over xg and xs

coordinates. If we choose kh = 0, we have:

˜̃
D(

km

2
, zg,−km

2
, zs, ω) =

∞∫

−∞
dxme−ikmxm

∞∫

−∞
dteiωtD (xm, t) . (40)

where D is simply summing of all traces within a CMP gather:

D (xm, t) =

∞∫

−∞
dxhD(xm +

xh

2
, zg, xm − xh

2
, zs, t). (41)
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Appendix D: Derivation of SC2

In this appendix, we solve for: F = SC2 (A1, A2), or equivalently:

G0k2FG0 = −G0k2A1G0A2G0. (42)

Expressing equation (42) explicitly in the actual integral form, we have

∞∫

−∞
dx1

∞∫

−∞
dz1G0(xg, zg, x1, z1, ω)

(
ω

c0

)2

F (x1, z1)G0(x1, z1, xs, zs, ω)

= −
∞∫

−∞
dx1

∞∫

−∞
dz1G0(xg, zg, x1, z1, ω)

(
ω

c0

)2

A1(x1, z1)

×
∞∫

−∞
dx2

∞∫

−∞
dz2G0(x1, z1, x2, z2, ω)

(
ω

c0

)2

A2(x2, z2)G0(x2, z2, ks, zs, ω).

(43)

We next Fourier transform over lateral geophone and shot coordinates:
∫∞
−∞ dxg

∫∞
−∞ dxse

iksxs−ikgxg ,
and express the Green’s function in the middle of the right-hand-side of equation (43) as

G0(x1, z1, x2, z2, ω) =
1
2π

∫ ∞

−∞
dk1

eik1(x1−x2)eiq1|z1−z2|

2iq1
,

in which k1 is conjugate to x1, and q1 = sgn(ω)
√

(ω/c0)
2 − k2

1. This results in

− 1
4c2

0

ω2

qgqs

˜̃
F (kg − ks, kz)e−i(qgzg+gszs) = − i

16πc4
0

∞∫

−∞
dk1

ω4

qgq1qs

∞∫

−∞
dz1Ã1(kg − k1, z1)

×
∞∫

−∞
dz2Ã2(k1 − ks, z2)ei[qg(z1−zg)+q1|z2−z1|+qs(z2−zs)].

(44)

The quantity

Ã1(km, z) =
1
2π

∫ ∞

−∞
dkze

−ikzz ˜̃
A1(km, kz)

is the Fourier transform of A1(xm, z), and ˜̃
F (km, kz) is the Fourier transform of F (xm, z) over both

xm and z.

We next compute F in the (km, z) domain: we apply the inverse Fourier transform (1/2π)
∫∞
−∞ e−ikzzdkz

to equation (44), resulting in:

F̃ (kg − ks, z) =
1

8π2c2
0

∫ ∞

−∞
dk1

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dkz

iω2

q1
Ã1(kg − k1, z1)Ã2(k1 − ks, z2)ei[qg(z1−z)+q1|z2−z1|+qs(z2−z)].

(45)
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The innermost integral of equation (45) contains Ã1 and Ã2, which depends on the measurement
of the wave field; it can be taken out of this integral (with respect to kz) if we parameterize the
data such that the Fourier conjugate kh of the lateral offset coordinate to be 0. See Clayton and
Stolt (1981) for a more detailed discussion. Making this choice, we have:

kh = kg + ks = 0,

ω

c0
=

1
2
sgn(kz)

√
k2

z + k2
m,

kg = −ks = 0.5km,

(46)

which results in a simplified expression for F̃ (km, z):

F̃ (km, z) =
1

16π2

∞∫

−∞
dk1

∞∫

−∞
dz1Ã1(

km

2
− k1, z1)

∞∫

−∞
dz2Ã2(k1 +

km

2
, z2)γ̃2(km, k1; ε0, ε1), (47)

where

γ̃2(km, k1; ε0, ε1) =

∞∫

−∞
dkzi

k2
z + k2

m

u1
ei[ε0kz+ε1u1] =

∞∫

−∞
dkzi

k2
z + k2

m

u1
ei4ψei[ε0+ε1]kz , (48)

and where we have defined:

ε0 = 0.5(z1 + z2)− z

ε1 = 0.5|z1 − z2|
u1 = 2q1 = sgn(kz)

√
k2

z + a1

a1 = k2
m − 4k2

1

4ψ = ε1 × (u1 − kz).

(49)

Notice that the expression γ̃2(km, k1; ε0, ε1) does not depend on the measured data; we may compute
it once and use it repeatedly, saving on computation.

Evaluation of F = SC2 (A1, A2) in the (km, z) domain

¿From equation (48), it’s easy to tell that γ̃2 is not an ordinary function because lim
kz→∞

u1
kz

= 1, so

the integrand (k2
z +k2

m)/(u1) approaches kz as kz →∞. We can decompose i× ei4ψ(k2
z +k2

m)/(u1)
as follows:

i× k2
z + k2

m

u1
ei4ψ = i× kz − ε1a1

2
+ ˜̃

ξ2

˜̃
ξ2 = i× k2

z + k2
m

u1
ei4ψ − i× kz +

ε1a1

2

(50)
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Decomposition above is based on the fact that, after put into the integral of inverse Fourier trans-
form

∫∞
−∞ dkze

i(ε0+ε1)kz , the first term kz will result in a singular distribution:

∫ ∞

−∞
ikze

i(ε0+ε1)kzdkz =
∂

∫∞
−∞ ei(ε0+ε1)kzdkz

∂(ε0 + ε1)
= (2π)× δ′(ε0 + ε1)

Likewise another singular distribution is produced by the second term:
∫ ∞

−∞
−ε1a1

2
ei(ε0+ε1)kzdkz = −πε1a1 × δ(ε0 + ε1)

But the distribution produced by the third term:
∫ ∞

−∞
˜̃
ξ2e

i(ε0+ε1)kzdkz

is regular because lim
kz 7→∞

˜̃
ξ2 × kz = ik2

m
2 + 2k2

1 − ε2
1a2

1
8 , which is a finite constant. For the purpose of

short notation, let’s denote the numerically expressible function as ξ̃2:

ξ̃2(km, k1; ε0, ε1) =
∫ ∞

−∞
˜̃
ξ2e

i(ε0+ε1)kzdkz (51)

So we decompose γ̃2(km, k1; ε0, ε1) into 2 singular distributions and 1 regular distribution:

γ̃2(km, k1; ε0, ε1) = (2π)δ′(ε0 + ε1)− πε1a1δ(ε0 + ε1) + ξ̃2(km, k1; ε0, ε1). (52)

From equation (47) and equation (48), the explicit expression of the phase term ε0 + ε1 depends
on z1 ≥ z2 or z1 ≤ z2. And in the first case ε0 + ε1 = z1 − z. So equation (52) can be further
expressed as:

γ̃2(km, k1; ε0, ε1) = (2π)δ′(z1 − z)− πε1a1δ(z1 − z) + ξ̃2

(
km, k1;

z1 + z2

2
− z,

z1 − z2

2

)
(53)

In the second case ε0 + ε1 = z2 − z. So equation (52) can be further expressed as:

γ̃2(km, k1; ε0, ε1) = (2π)δ′(z2 − z)− πε1a1δ(z2 − z) + ξ̃2

(
km, k1;

z1 + z2

2
− z,

z2 − z1

2

)
(54)

Substituting equation (53) or equation (54) into equation (47), depending on z1 ≥ z2 or z1 ≤ z2,
we can decompose F into 3 terms:
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F̃ (km, z) =
1

16π2

∞∫

−∞
dk1×




∞∫
−∞

dz1Ã1

(
km
2 − k1, z1

) z1∫
−∞

dz2Ã2

(
k1 + km

2 , z2

)
γ̃2

(
km, k1; z1+z2

2 − z, z1−z2
2

)

+
∞∫
−∞

dz2Ã1

(
k1 + km

2 , z2

) z2∫
−∞

dz1Ã2

(
k1 + km

2 , z1

)
γ̃2

(
km, k1; z1+z2

2 − z, z2−z1
2

)




= S̃C2,1 + S̃C2,2 + S̃C2,3,

(55)

The split above is base on the classification idea talked in the equation (37). For the first case:
z1 ≥ z2, the binary expression for this relation is 0, it’s corresponding index is l = 0 + 1 = 1. For
the second case: z1 ≤ z2, the binary expression for this relation is 1, it’s corresponding index is
l = 1 + 1 = 2.

The first term S̃C2,1 is further decomposed as:

S̃C2,1 = S̃C2,1,1 + S̃C2,1,2 (56)

S̃C2,1,1 =
1

16π2

∞∫

−∞
dk1

∞∫

−∞
dz1δ

′(z1 − z)Ã1(0.5km − k1, z1)

z1∫

−∞
dz2Ã2(k1 + 0.5km, z2)(2π)

Using equation (27) we have

= − 1
8π

∞∫

−∞
dk1

∂Ã1(0.5km − k1, z)
∂z

z∫

−∞
dz2Ã2(k1 + 0.5km, z2)

− 1
8π

∞∫

−∞
dk1Ã1(0.5km − k1, z)Ã2(k1 + 0.5km, z)

S̃C2,1,2 =
1

16π2

∞∫

−∞
dk1

∞∫

−∞
dz2δ

′(z2 − z)Ã2(k1 + 0.5km, z2)

z2∫

−∞
dz1Ã1(0.5km − k1, z1)(2π)

Using equation (27) we have

= − 1
8π

∞∫

−∞
dk1

∂Ã2(k1 + 0.5km, z)
∂z

z∫

−∞
dz2Ã1(0.5km − k1, z2)

− 1
8π

∞∫

−∞
dk1Ã1(0.5km − k1, z)Ã2(k1 + 0.5km, z)

(57)
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So we split S̃C2,1,1 and S̃C2,1,2 into 2 parts by integration by parts (which is used to get the last
step in the derivation above). In each case, the first part contains the first 2 terms in the right-
hand-side of the last equal sign above, they are purely responsible for imaging in the special case of
A1 = A2 = α1. The last term is responsible for parameter inversion in the special case mentioned
above. Only SC2,1 will not vanish if we indeed have a 1D earth.

S̃C2,2 =
1

16π2

∞∫

−∞
dk1×




∞∫
−∞

dz1Ã1(0.5km − k1, z1)
z1∫
−∞

dz2Ã2(k1 + 0.5km, z2)(−πε1a1)δ(z1 − z)
∞∫
−∞

dz2Ã2(k1 + 0.5km, z2)
z2∫
−∞

dz1Ã1(0.5km − k1, z1)(−πε1a1)δ(z2 − z)




= S̃C2,2,1 + S̃C2,2,2

The split above is base on the high-low relation between z1 and z2. For the first case: z1 ≥ z2, the
binary expression for this relation is 0, it’s corresponding index is l = 0 + 1 = 1. For the second
case: z1 ≤ z2, the binary expression for this relation is 1, it’s corresponding index is l = 1 + 1 = 2.

S̃C2,2 = S̃C2,2,1 + S̃C2,2,2

S̃C2,2,1 = − 1
16π

∞∫

−∞
dk1 (k2

m − 4k2
1)Ã1(0.5km − k1, z)

z∫

−∞
du(z − u)Ã2(k1 + 0.5km, u)

S̃C2,2,2 = − 1
16π

∞∫

−∞
dk1 (k2

m − 4k2
1)Ã2(0.5km + k1, z)

z∫

−∞
du(z − u)Ã1(0.5km − k1, u).

(58)

S̃C2,2 will vanish if we have a 1D earth. Even for geological model with lateral variations, S̃C2,2 is
very clean for the portion where the earth is horizontal. F̃2 is strong where the model is laterally
varying.

The third term is regular, and can be literally implemented as the form in equation (47). Because
ξ̃2(km, k1; ε0, ε1) is regular, no integration by parts is needed.

S̃C2,3 = S̃C2,3,1 + S̃C2,3,2

where:
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S̃C2,3,1 =
1

16π2

∞∫

−∞
dk1

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

z1∫

−∞
dz2×

Ã2(k1 + 0.5km, z2)ξ̃2

(
km, k1;

z1 + z2

2
− z,

z1 − z2

2

)

S̃C2,3,2 =
1

16π2

∞∫

−∞
dk1

∞∫

−∞
dz2Ã2(0.5km + k1, z2)

z2∫

−∞
dz1×

Ã2(0.5km − k1, z1)ξ̃2

(
km, k1;

z1 + z2

2
− z,

z2 − z1

2

)
,

(59)

where ξ̃2 is defined in equation (51)

The further classification is based on the relative high-low relation between z1 and z2.

Evaluation of F = SC2 (A1, A2) in the (x, z) domain

We can go a step further by applying the inverse Fourier transform (1/2π)
∫∞
−∞ dkmeikmx to the

results above to have:

SC2,1,1(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C2,1,1(km, z)

= − 1
16π2

∞∫

−∞
dk1

∞∫

−∞
eikmxdkm

∂Ã1(0.5km − k1, z)
∂z

z∫

−∞
dz2Ã2(k1 + 0.5km, z2)

− 1
16π2

∞∫

−∞
dk1

∞∫

−∞
eikmxdkmÃ1(0.5km − k1, z)Ã2(k1 + 0.5km, z)

Using equation (124) we have

= −1
4


∂A1(x, z)

∂z

z∫

−∞
duA2(x, u) + A1(x, z)A2(x, z)




(60)
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SC2,1,2(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C2,1,2(km, z)

= − 1
16π2

∞∫

−∞
dk1

∞∫

−∞
eikmxdkm

∂Ã2(k1 + 0.5km, z)
∂z

z∫

−∞
dz1Ã1(0.5km − k1, z1)

− 1
16π2

∞∫

−∞
dk1

∞∫

−∞
eikmxdkmÃ1(0.5km − k1, z)Ã2(k1 + 0.5km, z)

Using equation (124) we have

= −1
4


∂A2(x, z)

∂z

z∫

−∞
duA1(x, u) + A1(x, z)A2(x, z)




(61)

We can sum the 2 equations above to have:

SC2,1(x, z) = SC2,1,1(x, z) + SC2,1,2(x, z)

= −1
4


∂A1(x, z)

∂z

z∫

−∞
duA2(x, u) +

∂A2(x, z)
∂z

z∫

−∞
duA1(x, u) + 2A1(x, z)A2(x, z)


 (62)

SC2,2,1(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C2,2,1(km, z)

= − 1
64π2

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx (k2

m − 4k2
1)Ã1(0.5km − k1, z)×

z∫

−∞
dz2(z − z2)Ã2(k1 + 0.5km, z2)

Using equation (125) we have =
1
4

∂A1(x, z)
∂x

z∫

−∞
du

∂A2(x, u)
∂x

(z − u)

Using equation (66) we have =
1
4

∂A1(x, z)
∂x

z∫

−∞
du

u∫

−∞
dv

∂A2(x, v)
∂x

(63)
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SC2,2,2(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C2,2,2(km, z)

= − 1
64π2

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx (k2

m − 4k2
1)Ã2(0.5km − k1, z)

×
z∫

−∞
dz1(z − z2)Ã1(k1 + 0.5km, z2)

Using equation (125) we have =
1
4

∂A2(x, z)
∂x

z∫

−∞
du

∂A1(x, u)
∂x

(z − u)

Using equation (66) we have =
1
4

∂A2(x, z)
∂x

z∫

−∞
du

u∫

−∞
dv

∂A1(x, v)
∂x

(64)

We can sum the 2 equations above to have:

SC2,2(x, z) = SC2,2,1(x, z) + SC2,2,2(x, z)

=
1
4

∂A1(x, z)
∂x

z∫

−∞
du

u∫

−∞
dv

∂A2(x, v)
∂x

+
1
4

∂A2(x, z)
∂x

z∫

−∞
du

u∫

−∞
dv

∂A1(x, v)
∂x

(65)

In the derivation process above, the relation below was used to make the expression more symmet-
rical. For convenience, let’s define: B(x, z) =

∫ z
−∞ duA(x, u), dB(x, z) = A(x, z)dz, we have:

z∫

−∞
duA(x, u)(z − u) =

z∫

−∞
(z − u)dB(x, u)

= [(z − u)B(x, u)]u=z
u=−∞ −

z∫

−∞
B(x, u)d(z − u)

=

z∫

−∞
B(x, u)du =

z∫

−∞
du

u∫

−∞
A(x, v)dv

(66)

Simplification and clarification in physical interpretations have occured after Fourier transformation
of the singular terms SC2,1 and SC2,2. However, in the regular term SC2,3, no simplification and
clarification have been found in this manner.

We can summarize various parts of SC2(A1, A2) in the short-hand notation as:
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SC2(A1, A2) SC2(A2, A1)
SC2,1,1 −1

4

(
Az

1A
−z
2 + A1A2

) −1
4

(
Az

2A
−z
1 + A1A2

)
SC2,1,2 −1

4

(
Az

2A
−z
1 + A1A2

) −1
4

(
Az

1A
−z
2 + A1A2

)
SC2,2,1 −1

4Ax
1Ax−2z

2 −1
4Ax

2Ax−2z
1

SC2,2,2 −1
4Ax

2Ax−2z
1 −1

4Ax
1Ax−2z

2

SC2,3,1 SC2,3,1 (A1, A2) SC2,3,2 (A1, A2)
SC2,3,2 SC2,3,2 (A1, A2) SC2,3,1 (A1, A2)

In the general case of A1 6= A2, we have:

SC2 (A1, A2) = SC2 (A1, A2) + SC2 (A2, A1)

= −1
2

(
2A1A2 + Az

1A
−z
2 + Az

2A
−z
1

)
+

1
2
Ax

1Ax−2z
2 +

1
2
Ax

2Ax−2z
1

+ 2SC2,3,1 (A1, A2) + 2SC2,3,1 (A2, A1)

(67)

In the special case of A1 = A2 = A, we have:

SC2 (A,A) = SC2 (A,A) = −1
2

(
A2 + AzA−z

)
+

1
2
AxAx−2z + 2SC2,3,1 (A,A) (68)

Or in the simplest case: A1 = A2 = α1, we have α2:

α2 = SC2 (α1, α1) = SC2 (α1, α1) = −1
2

(
α2

1 + αz
1α
−z
1

)
+

1
2
αx

1αx−2z
1 + 2SC2,3,1 (α1, α1) (69)

where Sc2,3,1 is implemented in the (km, z) domain as defined in equation (59)
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Appendix E: Derivations of SC3

Next we consider the solution of the general third-order inverse scattering series equations. We
have

G0k
2FG0 = −G0k

2A1G0k
2A2G0k

2A3G0 (70)

whose solution is written as:

F = SC3(A1, A2, A3)

∞∫

−∞
dx1

∞∫

−∞
dz1G0(xg, zg, x1, z1, ω)k2F (x1, z1)G0(x1, z1, xs, zs, ω)

= −
∞∫

−∞
dx1

∞∫

−∞
dz1G0(xg, zg, x1, z1, ω)k2A1(x1, z1)

×
∞∫

−∞
dx2

∞∫

−∞
dz2G0(x1, z1, x2, z2, ω)A2(x2, z2)

×
∞∫

−∞
dx3

∞∫

−∞
dz3G0(x2, z2, x3, z3, ω)A3(x3, z3)G0(x3, z3, xs, zs, ω).

(71)

Just like before, we Fourier transform over lateral geophone and shot coordinates:
∫ ∞

−∞
dxg

∫ ∞

−∞
dxse

iksxs−ikgxg ,

and express the two Green’s functions in the middle of the right-hand-side of equation (71) as

G0(x1, z1, x2, z2, ω) =
1
2π

∫ ∞

−∞
dk1

eik1(x1−x2)eiq1|z1−z2|

2iq1

G0(x2, z2, x3, z3, ω) =
1
2π

∫ ∞

−∞
dk2

eik2(x2−x3)eiq2|z2−z3|

2iq2

q1 = sgn(ω)
√

(ω/c0)
2 − k2

1 q2 = sgn(ω)
√

(ω/c0)
2 − k2

2

in which k1 and k2 are Fourier conjugate to x1, x2, respectively. This results in

− 1
4c2

0

ω2

qgqs

˜̃
F (kg − ks, kz)e−i(qgzg+gszs) = − 1

64π2c6
0

∞∫

−∞
dk1

ω6

qgq1q2qs

∞∫

−∞
dz1Ã1(kg − k1, z1)

×
∞∫

−∞
dz2Ã2(k1 − k2, z2)

∞∫

−∞
dz3Ã3(k2 − ks, z3)ei[qg(z1−zg)+q1|z2−z1|+q2|z3−z2|+qs(z2−zs)].

(72)
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The quantity ˜̃
F (km, kz) is the Fourier transform of F (xm, z) over both xm and z. We next compute

F in the (km, z) domain: we apply the inverse Fourier transform (1/2π)
∫∞
−∞ eikzzdkz to equation

(72), resulting in:

F̃ (kg − ks, z) =
1

32π3

∫ ∞

−∞
dk1

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz3

∫ ∞

−∞
dkz

(ω/c0)4

q1q2

Ã1(kg − k1, z1)Ã2(k1 − k2, z2)Ã3(k2 − ks, z3)ei[qg(z1−z)+q1|z2−z1|+q2|z3−z2|+qs(z2−z)].

(73)

The innermost integral of equation (73) contains Ã1, Ã2, and Ã3, which depends on the measure-
ment of the wave field; just like the discussion in the SC2 derivation, it can be taken out of this
integral by fixing the Fourier conjugate kh of the lateral offset coordinate to be zero. With the
choice of kh = 0, we can simplify (73) using the relations in equation (46).

F̃ (km, z) =
1

128π3

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)γ̃3(km, k1, k2; ε0, ε1, ε2),

(74)

where

γ̃3(km, k1, k2; ε0, ε1, ε2) =

∞∫

−∞
dkz

(k2
z + k2

m)2

u1u2
ei[ε0kz+ε1u1+ε2u2]

=

∞∫

−∞
dkz

(k2
z + k2

m)2

u1u2
ei4ψei[ε0+ε1+ε2]kz .

(75)

ε0 = 0.5(z1 + z3)− z ε1 = 0.5|z1 − z2| ε2 = 0.5|z2 − z3|
u1 = 2q1 = sgn(kz)

√
k2

z + a1 u2 = 2q2 = sgn(kz)
√

k2
z + a2

a1 = k2
m − 4k2

1 a2 = k2
m − 4k2

2

4ψ = ε1 × (u1 − kz) + ε2 × (u2 − kz).

(76)

Evaluation of F = SC3 (A1, A2, A3) in the (km, z) domain

¿From equation (75) and (76), it’s easy to tell that γ̃3 is not an ordinary function because lim
kz→∞

u1
kz

=
u2
kz

= 1, so the integrand (k2
z + k2

m)2/(u1u2) approaches k2
z as kz → ∞. We can decompose

(k2
z + k2

m)2ei4ψ/(u1u2) as follows:

(k2
z + k2

m)2ei4ψ

u1u2
= k2

z + i
ε1a1 + ε2a2

2
kz +

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
+ ˜̃

ξ3

˜̃
ξ3 =

(k2
z + k2

m)2ei4ψ

u1u2
− k2

z − i
ε1a1 + ε2a2

2
kz −

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
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Decomposition above is based on the fact that, after put into the integral of inverse Fourier trans-
form

∫∞
−∞ dkze

i(ε0+ε1+ε1)kz , the first term k2
z will result in a singular distribution:

∫ ∞

−∞
k2

ze
i(ε0+ε1+ε2)kzdkz = −∂2

∫∞
−∞ ei(ε0+ε1+ε2)kzdkz

∂(ε0 + ε1 + ε1)2
= −(2π)× δ′′(ε0 + ε1 + ε2)

Likewise another singular distribution is produced by the second term:
∫ ∞

−∞
ikz

ε1a1 + ε2a2

2
ei(ε0+ε1+ε2)kzdkz = π(ε1a1 + ε2a2)× δ′(ε0 + ε1 + ε2),

and the last singular distribution is produced by the third term:
∫ ∞

−∞

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
ei(ε0+ε1+ε2)kzdkz

= 2π

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
× δ(ε0 + ε1 + ε2)

But the distribution produced by the fourth term:

∫ ∞

−∞
˜̃
ξ3e

i(ε0+ε1)kzdkz

is regular because the the following limit is finite,

lim
kz 7→∞

˜̃
ξ3 × kz =

k2
m + 2(k2

1 + k2
2)

2
(ε1a1 + ε2a2)− ε1a

2
1 + ε2a

2
2

8
− (ε1a1 + ε2a2)3

48

For the purpose of short notation, let’s denote the numerically expressible function as ξ̃3:

ξ̃3(km, k1, k2; ε0, ε1, ε2) =
∫ ∞

−∞
˜̃
ξ3e

i(ε0+ε1+ε2)kzdkz

So we decompose γ̃3(km, k1, k2; ε0, ε1, ε2) into 3 singular distributions and 1 regular distribution:

γ̃3(km, k1, k2; ε0, ε1, ε2) = −(2π)δ′′(ε0 + ε1 + ε2) + π(ε1a1 + ε2a2)δ′(ε0 + ε1 + ε2)

+ 2π

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
δ(ε0 + ε1 + ε2) + ξ̃3(km, k1, k2; ε0, ε1, ε2)

(77)

Substituting equation (77) into equation (74), we can separate F as follows:

F̃ (km, z) =
1

128π3

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)γ̃3(km, k1, k2; ε0, ε1, ε2)

= S̃C3,1 + S̃C3,2 + S̃C3,3 + S̃C3,4,
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where

S̃C3,1 =
−1

64π2

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)δ′′ (ε0 + ε1 + ε2)

(78)

S̃C3,2 =
1

128π2

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3) [ε1a1 + ε2a2] δ′ (ε0 + ε1 + ε2)

(79)

S̃C3,3 =
−1

64π2

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

∞∫

−∞
dz3

× Ã3(k2 + 0.5km, z3)
[
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)

8

]
δ (ε0 + ε1 + ε2)

(80)

S̃C3,4 =
−1

64π2

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

∞∫

−∞
dz3

× Ã3(k2 + 0.5km, z3)ξ̃3

(
km, k1, k2,

z1 + z3

2
− z,

|z1 − z2|
2

,
|z2 − z3|

2

) (81)

Except for the last term S̃C3,4, all terms will be Fourier transformed from km to x in the following
subsections. Only the first term SC3,1 is non-vanishing if the earth is 1D, it is called the more
significant term.

Evaluation of S̃C3,1 and SC3,1

First we Fourier transform equation (78) into (x, z) domain:
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SC3,1(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C3,1

=
−1

128π3

∞∫

−∞
dkmeikmx

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

×
∞∫

−∞
dz2Ã2(k1 − k2, z2)

∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)δ′′(ε0 + ε1 + ε2)

=
−1

128π3

∞∫

−∞
dkmeikmx

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1

∞∫

−∞
dx1A1(x1, z1)e−i(0.5km−k1)x1

∞∫

−∞
dz2

×
∞∫

−∞
dx2A2(x2, z2)e−i(k1−k2)x2

∞∫

−∞
dz3

∞∫

−∞
dx3A3(x3, z3)e−i(k2+0.5km)x3δ′′(ε0 + ε1 + ε2)

=
−1

128π3

∞∫

−∞
dz1

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dz2

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dz3

∞∫

−∞
dx3A3(x3, z3)

× δ′′(ε0 + ε1 + ε2)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)

¿From this point, it should be very clear that the integral above can be greatly simplified because
the inner 3 integrals are δ-functions:

SC3,1(x, z) =
−8π3

128π3

∞∫

−∞
dz1

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dz2

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dz3

∞∫

−∞
dx3A3(x3, z3)

× δ′′(ε0 + ε1 + ε2)δ(x− 0.5x1 − 0.5x3)δ(x1 − x2)δ(x2 − x3)

=
−1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′′(ε0 + ε1 + ε2)

∞∫

−∞
dx1A1(x1, z1)

×
∞∫

−∞
dx2A2(x2, z2)δ(x2 − x1)

∞∫

−∞
dx3A3(x3, z3)δ(0.5x1 + 0.5x3 − x)δ(x3 − x2)
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=
−1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′′(ε0 + ε1 + ε2)

∞∫

−∞
dx1A1(x1, z1)

×
∞∫

−∞
dx2A2(x2, z2)A3(x2, z3)δ(0.5x1 + 0.5x2 − x)δ(x2 − x1)

=
−1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′′(ε0 + ε1 + ε2)

∞∫

−∞
dx1A1(x1, z1)A2(x1, z2)A3(x1, z3)δ(x1 − x)

=
−1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′′(ε0 + ε1 + ε2)A1(x, z1)A2(x, z2)A3(x, z3)

=
−1
16

∞∫

−∞
dz1A1(x, z1)

∞∫

−∞
dz2A2(x, z2)

∞∫

−∞
dz3A3(x, z3)δ′′ (ε0 + ε1 + ε2)

= SC3,1,1(x, z) + SC3,1,2(x, z) + SC3,1,3(x, z) + SC3,1,4(x, z)

According to equation (75), ε0 + ε1 + ε2 has very different expressions depending on the relative
relation between z1, z2, and z3, that is, the higher-lower-higher relation which is crucial in the
internal multiple attenuation.

Among different relative high-low relations between adjacent scatters. First let’s consider z1 ≥
z2 ≥ z3. Expressed in our classification scheme defined in equation (37), it’s binary expression
is (00)b = 0, so we have: l = 0 + 1 = 1. So it should be written as SC3,1,1(x, z). In this case
ε0 + ε1 + ε2 = z1 − z.

SC3,1,1(x, z) =
−1
16

∞∫

−∞
dz1δ

′′ (z1 − z)A1(x, z1)

z1∫

−∞
dz2A2(x, z2)

z2∫

−∞
dz3A3(x, z3)

Using equation (28) we have

=
−1
16

∂2

∂z2


A1(x, z)

z∫

−∞
dz2A2(x, z2)

z2∫

−∞
dz3A3(x, z3)




= − 1
16

[
A1

[
A2A

−z
3

]−z
]2z

= − 1
16

(
A2z

1

[
A2A

−z
3

]−z + 2Az
1A2A

−z
3 + Az

2A1A
−z
3 + A1A2A3

)

Next let’s consider the relation z1 ≤ z2 ≤ z3, in binary expression, it is (11)b = 3. So we have
l = 3 + 1 = 4. So the resulting integral is named SC3,1,4(x, z). In this case ε0 + ε1 + ε2 = z3 − z.
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SC3,1,4(x, z) =
−1
16

∞∫

−∞
dz3δ

′′ (z3 − z)A3(x, z3)

z3∫

−∞
dz2A2(x, z2)

z2∫

−∞
dz1A1(x, z1)

Using equation (28) we have

=
−1
16

∂2

∂z2


A3(x, z)

z∫

−∞
dz2A2(x, z2)

z2∫

−∞
dz1A1(x, z1)




= − 1
16

[
A3

[
A2A

−z
1

]−z
]2z

= − 1
16

(
A2z

3

[
A2A

−z
1

]−z + 2Az
3A2A

−z
1 + Az

2A3A
−z
1 + A1A2A3

)

Next let’s study the case: z1 ≤ z2 ≥ z3, it’s corresponding binary representation is (10)b = 2, and
l = 2+1 = 3. So correspondingly we have the name SC3,1,3(x, z). In this case ε0 + ε1 + ε2 = z2− z.

SC3,1,3(x, z) =
−1
16

∞∫

−∞
dz2δ

′′ (z2 − z) A2(x, z2)

z2∫

−∞
dz1A1(x, z1)

z2∫

−∞
dz3A3(x, z3)

Using equation (28) we have

=
−1
16

∂2

∂z2


A2(x, z)

z∫

−∞
dz1A1(x, z1)

z∫

−∞
dz3A3(x, z3)


 = − 1

16
[
A2A

−z
1 A−z

3

]2z

= − 1
16

(
A2z

2 A−z
1 A−z

3 + 2Az
2A1A

−z
3 + 2Az

2A3A
−z
1 + Az

1A2A
−z
3 + Az

3A2A
−z
1 + 2A1A2A3

)

We then consider the case z1 ≥ z2 ≤ z3, it’s binary representation is (01)b = 1, we have l = 1+1 = 2.
So it’s name is SC3,1,2(x, z). In this case ε0 + ε1 + ε2 = z1 − z2 + z3 − z.

SC3,1,2(x, z) =
−1
16

∞∫

−∞
dz3A3(x, z3)

z3∫

−∞
dz2A2(x, z2)

∞∫

z2

dz1A1(x, z1)δ′′ (z1 − z2 + z3 − z)

Following the derivation of Shaw et. al. (2003), we define a new variable u = z1 + z3 − z2, and
change the integration variable from z2 to u, the last integral in the equation above become:

∞∫

−∞
duδ′′ (u− z)

u∫

−∞
dz3A3(z3)

u∫

−∞
dz1A1(z1)A2(z1 + z3 − u)

Using equation (28) we have

=
∂2

∂z2

z∫

−∞
dz3A3(z3)

z∫

−∞
dz1A1(z1)A2(z1 + z3 − z)
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=
∂

∂z


A1[A2A3]

−z + A3[A2A1]
−z −

z∫

−∞
dz3A3(z3)

z∫

−∞
dz1A1(z1)A′2(z1 + z3 − z)




=
[
A1[A2A3]

−z]z
+

[
A3[A2A1]

−z]z −A1[A3A
z
2]
−z −A3[A1A

z
2]
−z

+

z∫

−∞
dz3A3(z3)

z∫

−∞
dz1A1(z1)A′′2(z1 + z3 − z)

Following Shaw et. al. 2003, the derivatives in A2 are evenly distributed to A1 and A3 using
integration by parts as follows:

z∫

−∞
dz3A3(z3)

z∫

−∞
dz1A1(z1)A′′2(z1 + z3 − z) =

z∫

−∞
dz3A3(z3)

z∫

−∞
A1(z1)dA′2(z1 + z3 − z)

= A1[Az
2A3]

−z −
z∫

−∞
dz3A3(z3)

z∫

−∞
dz1A

′
1(z1)A′2(z1 + z3 − z)

= A1[Az
2A3]

−z −
z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A3(z3)A′2(z1 + z3 − z)

The last integral above can be rewritten using integration by parts once more to make it more
symmetrical:

z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A3(z3)A′2(z1 + z3 − z)

= A1[Az
2A3]

−z −A3[Az
1A2]

−z +

z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A

′
3(z3)A2(z1 + z3 − z)

In summary, we have:

∞∫

−∞
duδ′′ (u− z)

u∫

−∞
dz3A3(z3)

u∫

−∞
dz1A1(z1)A2(z1 + z3 − u)

=
[
A1[A2A3]

−z]z
+

[
A3[A2A1]

−z]z −A1[A3A
z
2]
−z −A3[A1A

z
2]
−z

+ A1[Az
2A3]

−z −A3[Az
1A2]

−z +

z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A

′
3(z3)A2(z1 + z3 − z)
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=
[
A1[A2A3]

−z]z
+

[
A3[A2A1]

−z]z −A3[A1A
z
2 + Az

1A2]
−z

+

z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A

′
3(z3)A2(z1 + z3 − z)

=
[
A1[A2A3]

−z]z
+

[
A3[A2A1]

−z]z −A1A2A3 +

z∫

−∞
dz1A

′
1(z1)

z∫

−∞
dz3A

′
3(z3)A2(z1 + z3 − z)

=
[
A1[A2A3]

−z]z
+

[
A3[A2A1]

−z]z −A1A2A3 + IM1(Az
1, A2, A

z
3)

= Az
1[A2A3]

−z + Az
3[A2A1]

−z + A1A2A3 + IM1(Az
1, A2, A

z
3)

According to the results of Shaw et al, in the special case of A1 = A2 = A3 = α1. This last integral
in the equation above: IM1(A1, A2, A3), will give a box at the correct time for first order internal
multiples, with a very small factor difference.

−16SC3,1,1(A1, A2, A3) =
[
A1

[
A2A

−z
3

]−z
]2z

−16SC3,1,4(A1, A2, A3) =
[
A3

[
A2A

−z
1

]−z
]2z

−16SC3,1,3(A1, A2, A3) =
[
A2A

−z
1 A−z

3

]2z

−16SC3,1,2(A1, A2, A3) = Az
1[A2A3]

−z + Az
3[A2A1]

−z + A1A2A3 + IM1(Az
1, A2, A

z
3)

Because the relation between A1, A2, and A3 is not fixed, we cannot simplify the expression above
further. But in the inverse scattering theory, all the 6 permutation of (A1, A2, A3) will also be
present. (If there is any equality between A1, A2, A3, the degeneracy can be easily handled by
multiplying a factor.)

First, consider the permutation sum of SC3,1,1, we have:

SC3,1,1 (A1, A2, A3) = sum1 + sum2 + sum3 where

sum1 = SC3,1,1 (A1, A2, A3) + SC3,1,1 (A1, A3, A2)

=
−1
16

([
A1

[
A2A

−z
3

]−z
]2z

+
[
A1

[
A3A

−z
2

]−z
]2z

)
=
−−→
(25) =

−1
16

[
A1A

−z
2 A−z

3

]2z

sum2 = SC3,1,1 (A2, A3, A1) + SC3,1,1 (A2, A1, A3) =
−−→
(25) =

−1
16

[
A2A

−z
3 A−z

1

]2z

sum3 = SC3,1,1 (A3, A1, A2) + SC3,1,1 (A3, A2, A1) =
−−→
(25) =

−1
16

[
A3A

−z
1 A−z

2

]2z

SC3,1,1 (A1, A2, A3) =
−1
16

[
A1A

−z
2 A−z

3 + A−z
1 A2A

−z
3 + A−z

1 A−z
2 A3

]2z

We then consider the permutation sum of SC3,1,4, because of the following equality:

SC3,1,4 (A1, A2, A3) =
−1
16

[
A3

[
A2A

−z
1

]−z
]2z

= SC3,1,1 (A3, A2, A1)
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That is, every term in the permutation sum of SC3,1,4 is equivalent to one term in the permutation
of SC3,1,1. It’s easy to see that these 2 permutation sums are equivalent:

SC3,1,4 = SC3,1,1

We then consider the permutation sum of SC3,1,3, because of the following equality:

SC3,1,1 (A1, A2, A3) + SC3,1,1 (A1, A3, A2) =
−1
16

[
A1A

−z
2 A−z

3

]2z

= SC3,1,3 (A1, A2, A3) = SC3,1,3 (A1, A3, A2)

That is, the sum of 2 terms of in the permutation sum of SC3,1,1 equals to one of the 2 identical
terms in the permutation sum of SC3,1,3. We have:

SC3,1,1 =
1
2
SC3,1,3

In summary, we have:

−16SC3,1,1(A1, A2, A3) =
[
A1A

−z
2 A−z

3 + A−z
1 A2A

−z
3 + A−z

1 A−z
2 A3

]2z

=





A2z
1 A−z

2 A−z
3

A−z
1 A2z

2 A−z
3

A−z
1 A−z

2 A2z
3



 + 3 ·





Az
1A2A

−z
3

Az
1A

−z
2 A3

A1A
z
2A

−z
3

A1A
−z
2 Az

3

A−z
1 A2A

z
3

A−z
1 Az

2A3





+ 6 ·A1A2A3

SC3,1,4(A1, A2, A3) = SC3,1,1(A1, A2, A3)
SC3,1,3(A1, A2, A3) = 2× SC3,1,1(A1, A2, A3)

−16SC3,1,2(A1, A2, A3) = 4 ·




Az
1[A2A3]

−z

Az
2[A1A3]

−z

Az
3[A1A2]

−z



 + 6 ·A1A2A3 + 2 ·




IM1(Az

1, A2, A
z
3)

IM1(Az
2, A1, A

z
3)

IM1(Az
1, A3, A

z
2)





¿From the study above, even in the general case, after the permutation sum, symmetry was pre-
served between different high-low relations: all the non-w diagrams are essentially the same, they
differ at most by a constant factor.

In α3, the same symmetry between different high-low relation had already been extensively studied
by Shaw et. al. and Innanen et. al.

The fact that the same symmetry shown in the simplest case in the permutation sum of more
complicated terms, suggest in the derivation process, permutation sum can simplify the relations.
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Let’s summarize SC3 (A1, A2, A3) in the most general case that these 3 scatters are distinct with
each other:

SC3,1 (A1, A2, A3) =− 1
4





A2z
1 A−z

2 A−z
3

A−z
1 A2z

2 A−z
3

A−z
1 A−z

2 A2z
3



− 3

4
·





Az
1A2A

−z
3

Az
1A

−z
2 A3

A1A
z
2A

−z
3

A1A
−z
2 Az

3

A−z
1 A2A

z
3

A−z
1 Az

2A3





− 15
8
·A1A2A3

− 1
4
·




Az
1[A2A3]

−z

Az
2[A1A3]

−z

Az
3[A1A2]

−z



− 1

8
·



IM1(Az

1, A2, A
z
3)

IM1(Az
2, A1, A

z
3)

IM1(Az
1, A3, A

z
2)





(82)

If among these 3 scatters: A1, A2, A3, 2 of them are equal. We have:

SC3,1 (A1, A1, A2) = −1
8

{
2A2z

1 A−z
1 A−z

2

A−z
1 A−z

1 A2z
2

}
− 3

4
·




Az
1A1A

−z
2

Az
1A

−z
1 A2

A1A
−z
1 Az

2



− 15

16
·A1A1A2

− 1
8
·
{

2Az
1[A1A2]

−z

Az
2[A1A1]

−z

}
− 1

16
·
{

2IM1(Az
1, A1, A

z
2)

IM1(Az
1, A2, A

z
1)

} (83)

If all these 3 scatters are equal: A1 = A2 = A3 = A. We have:

SC3,1 (A,A,A) = −1
8
A2zA−zA−z − 3

4
AzAA−z − 5

16
A3 − 1

8
Az

[
A2

]−z − 1
16
IM1(Az, A,Az) (84)

The more significant term is the only non-vanishing term if the earth is 1D. Otherwise, less signif-
icant terms described below will be activated:

Evaluation of SC3,2 and SC3,2

We then Fourier transform equation (79) into (x, z) domain:

S̃C3,2(km, z) =
1

128π2

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

×
∞∫

−∞
dz2Ã2(k1 − k2, z2)

∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)(ε1a1 + ε2a2)δ′(ε0 + ε1 + ε2)

=
I1(A1, A2, A3) + I2(A1, A2, A3)

128π2
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where:

I1(A1, A2, A3) =

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)

|z1 − z2|
2

(
k2

m − 4k2
1

)
δ′

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

I2(A1, A2, A3) =

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)

|z2 − z3|
2

(
k2

m − 4k2
2

)
δ′

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

Let’s consider I2(A1, A2, A3), we will prove its equivalence with I1(A3, A2, A1). So we only need
to calculate half of the integral. The other half can be obtained by switching the first and third
scatters: A1 ←→ A3. Because the switch mentioned above happens among different terms in the
permutation sum, it will not change the permutation sum. The permutation sum of I1 and I4 are
actually the same.

∑̄
I1 (A1, A2, A3) =

∑̄
I2 (A1, A2, A3)

I2(A1, A2, A3) =

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)

|z2 − z3|
2

(
k2

m − 4k2
2

)
δ′

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

define : k′1 = −k2 k′2 = −k1 z′2 = z2 z′1 = z3 z′3 = z1 we have

=

∞∫

−∞
dk′1

∞∫

−∞
dk′2

∞∫

−∞
dz1Ã1(0.5km + k′2, z

′
3)

∞∫

−∞
dz′2Ã2(k′1 − k′2, z

′
2)

×
∞∫

−∞
dz′3Ã3(0.5km − k′1, z3)

|z′1 − z′2|
2

(
k2

m − 4k′21
)
δ′

(
z′1 + z′3

2
− z +

|z′1 − z′2|
2

+
|z′2 − z′3|

2

)

= I1(A3, A2, A1)

Let’s Fourier transform the left half of the integral expression for S̃C3,2 (it will be denoted as S̃Cleft3,2

hereafter) into (x, z) domain.
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SCleft3,2 (x, z) =
1
2π

∞∫

−∞
dkmeikmxI1(A1, A2, A3)

=
1

256π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2)ε1

∞∫

−∞
dkmeikmx

×
∞∫

−∞
dk1

∞∫

−∞
dk2a1Ã1(0.5km − k1, z1)Ã2(k1 − k2, z2)Ã3(k2 + 0.5km, z3)

and further express Ã1, Ã2, and Ã3 in the (x, z) domain. The Fourier transform over x is defined
in equation (16).

Ã1(0.5km − k1, z1) =

∞∫

−∞
dx1e

−i(0.5km−k1)x1A1(x1, z1)

Ã2(k1 − k2, z2) =

∞∫

−∞
dx2e

−i(k1−k2)x2A1(x2, z2)

Ã3(k2 + 0.5km, z3) =

∞∫

−∞
dx3e

−i(k2+0.5km)x3A1(x3, z3)

we have:

SCleft3,2 (x, z) =
1

256π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2)ε1

×
∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
1

) ∞∫

−∞
dkmeikm(x−0.5x1−0.5x2)

Using equation (126) we have

= −1
8

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2)ε1
∂A1(x, z1)

∂x

∂

∂x
[A2(x, z2)A3(x, z3)]

= − 1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2) |z1 − z2| ∂A1(x, z1)
∂x

∂

∂x
[A2(x, z2)A3(x, z3)]
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The integrand can be naturally separated into 2 terms:

∂A1(x, z1)
∂x

∂

∂x
[A2(x, z2)A3(x, z3)]

=
∂A1(x, z1)

∂x

∂A2(x, z2)
∂x

A3(x, z3) +
∂A1(x, z1)

∂x
A2(x, z3)

∂A3(x, z3)
∂x

Similarly, the SCleft3,2 can be decomposed as follows:

16SCleft3,2 (x, z) =−
∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2) |z1 − z2| ∂A1(x, z1)
∂x

∂A2(x, z2)
∂x

A3(x, z3)

−
∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

′(ε0 + ε1 + ε2) |z1 − z2| ∂A1(x, z1)
∂x

A2(x, z3)
∂A3(x, z3)

∂x

Without considering the different x-wise operations on each factor, each of them is expressible in
the product of 3 function of z: B1(z1)B2(z2)B3(z3). So the z-wise integral is of the form:

Πz(B1, B2, B3) =

−
∞∫

−∞
dz1δ

′(z1 − z)B1(z1)

z1∫

−∞
dz2 (z1 − z2) B2(z2)

z2∫

−∞
dz3B3(z3)

−
∞∫

−∞
dz3δ

′(z3 − z)B3(z3)

z3∫

−∞
dz2B2(z2)

z2∫

−∞
dz1 (z2 − z1) B1(x1, z1)

−
∞∫

−∞
dz2δ

′(z2 − z)B2(z2)

z2∫

−∞
dz1 (z2 − z1) B1(z1)

z2∫

−∞
dz3B3(z3)

−
∞∫

−∞
duδ′(u− z)

u∫

−∞
dz1B1(z1)

u∫

−∞
dz3 (u− z3) B2(z1 + z3 − u)B3(z3)

=Π(1)
z + Π(2)

z + Π(3)
z + Π(4)

z

(85)

Integrals above can be simplified by the rule of integrating over δ-functions. See equation (27) for
detail. In short, we have:
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Π(1)
z = −

∞∫

−∞
dz1δ

′(z1 − z)B1(z1)

z1∫

−∞
dz2 (z1 − z2) B2(z2)

z2∫

−∞
dz3B3(z3)

= Bz
1

[
B2B

−z
3

]−2z + B1

[
B2B

−z
3

]−z

Π(4)
z = −

∞∫

−∞
dz3δ

′(z3 − z)B3(z3)

z3∫

−∞
dz2B2(z2)

z2∫

−∞
dz1 (z2 − z1) B1(x1, z1)

= Bz
3

[
B2B

−2z
1

]−z + B2B3B
−2z
1

Π(3)
z = −

∞∫

−∞
dz2δ

′(z2 − z)B2(z2)

z2∫

−∞
dz1 (z2 − z1) B1(z1)

z2∫

−∞
dz3B3(z3)

= Bz
2B−z

3 B−2z
1 + B2B

−z
1 B−z

3 + B2B3B
−2z
1

Π(2)
z = −

∞∫

−∞
duδ′(u− z)

u∫

−∞
dz1B1(z1)

u∫

−∞
dz3 (u− z3) B2(z1 + z3 − u)B3(z3)

= IM1(B1, B2, B3) + B1[B2B3]
−2z − IM2(B1, B

z
2 , B3)

= B1[B2B3]
−2z + IM2(B1, B2, B

z
3)

Summing the terms together, we have:

Πz (B1, B2, B3) =
{

Bz
1

[
B2B

−z
3

]−2z + B1

[
B2B

−z
3

]−z
}

+
{

Bz
3

[
B2B

−2z
1

]−z + B2B3B
−2z
1

}

+
{
Bz

2B−z
3 B−2z

1 + B2B
−z
1 B−z

3 + B2B3B
−2z
1

}

+
{
IM1(B1, B2, B3) + B1[B2B3]

−2z − IM2(B1, B
z
2 , B3)

}

=
{

Bz
1

[
B2B

−z
3

]−2z + B1

[
B2B

−z
3

]−z
}

+
{

Bz
3

[
B2B

−2z
1

]−z + B2B3B
−2z
1

}

+
{
Bz

2B−z
3 B−2z

1 + B2B
−z
1 B−z

3 + B2B3B
−2z
1

}
+

{
B1[B2B3]

−2z + IM2(B1, B2, B
z
3)

}

= [E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9] (B1, B2, B3)

where:

E1(B1, B2, B3) = Bz
1

[
B2B

−z
3

]−2z
E2(B1, B2, B3) = B1

[
B2B

−z
3

]−z
E3(B1, B2, B3) = Bz

3

[
B2B

−2z
1

]−z

E4(B1, B2, B3) = B2B3B
−2z
1 E5(B1, B2, B3) = Bz

2B−z
3 B−2z

1 E6(B1, B2, B3) = B2B
−z
1 B−z

3

E7(B1, B2, B3) = B2B3B
−2z
1 E8(B1, B2, B3) = B1[B2B3]

−2z E9(B1, B2, B3) = IM2(B1, B2, B
z
3)

Equation (85) will be evaluated twice, in the first evaluation, substituting in B1 = ∂A1
∂x , B2 = ∂A2

∂x ,
B3 = A3, in the second evaluation, we substitute in B1 = ∂A1

∂x , B3 = A2, B2 = ∂A3
∂x . Then
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the 2 evaluations will be summed together to have: Πz(∂A1
∂x , ∂A2

∂x , A3) + Πz(∂A1
∂x , A2,

∂A3
∂x ). With

straightforward algebra, it’s easy to see:

E1

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E1

(
∂A1

∂x
,A2,

∂A3

∂x

)
= Ax+z

1

[
A2A

−z
3

]x−2z

E2

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E2

(
∂A1

∂x
,A2,

∂A3

∂x

)
= Ax

1

[
A2A

−z
3

]x−z

E3

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E3

(
∂A1

∂x
,A2,

∂A3

∂x

)

= Ax−2z
1

[
Az

3A
−z
2

]x −Ax+z
3

[
Ax−z

1 A−z
2

]−z −Az
3

[
Ax−z

1 Ax−z
2

]−z

E4

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E4

(
∂A1

∂x
,A2,

∂A3

∂x

)
= [A2A3]

xAx−2z
1

E5

(
∂A1

∂x
,
∂A2

∂x
, A3

)
+ E5

(
∂A1

∂x
, A2,

∂A3

∂x

)
=

[
Az

2A
−z
3

]x
Ax−2z

1

E6

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E6

(
∂A1

∂x
,A2,

∂A3

∂x

)
= Ax−z

1

[
A2A

−z
3

]x

E7

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E7

(
∂A1

∂x
,A2,

∂A3

∂x

)
= [A2A3]

xAx−2z
1

E8

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E8

(
∂A1

∂x
,A2,

∂A3

∂x

)
= Ax

1 [A2A3]
x−2z

E9

(
∂A1

∂x
,
∂A2

∂x
,A3

)
+ E9

(
∂A1

∂x
,A2,

∂A3

∂x

)
= IM2(Ax

1 , A2, A
x+z
3 ) + IM2(Ax

1 , Ax
2 , Az

3)

In summary, we have:
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Πz(
∂A1

∂x
,
∂A2

∂x
,A3) + Πz(

∂A1

∂x
, A2,

∂A3

∂x
) =

(
f1 + f2 + f3 + f4 + f5 + f6 + f7

+f8 + f9 + f10 + f11 + f12

)

where:

f1(A1, A2, A3) = Ax+z
1

[
A2A

−z
3

]x−2z
f2(A1, A2, A3) = Ax

1

[
A2A

−z
3

]x−z

f3(A1, A2, A3) = Ax−2z
1

[
Az

3A
−z
2

]x
f4(A1, A2, A3) = −Ax+z

3

[
Ax−z

1 A−z
2

]−z

f5(A1, A2, A3) = −Az
3

[
Ax−z

1 Ax−z
2

]−z
f6(A1, A2, A3) = [A2A3]

xAx−2z
1

f7(A1, A2, A3) =
[
Az

2A
−z
3

]x
Ax−2z

1 f8(A1, A2, A3) = Ax−z
1

[
A2A

−z
3

]x

f9(A1, A2, A3) = [A2A3]
xAx−2z

1 f10(A1, A2, A3) = Ax
1 [A2A3]

x−2z

f11(A1, A2, A3) = IM2(Ax
1 , A2, A

x+z
3 ) f12(A1, A2, A3) = IM2(Ax

1 , Ax
2 , Az

3)

If we group the following 4 terms together, we have:

(f3 + f6 + f7 + f9) (A1, A2, A3) = Ax−2z
1

[
2A2A3 + Az

2A
−z
3 + A−z

2 Az
3

]x

The permutation sum of the expression above will be:

2Ax−2z
1

[
2A2A3 + Az

2A
−z
3 + A−z

2 Az
3

]x

+2Ax−2z
2

[
2A3A1 + Az

3A
−z
1 + A−z

3 Az
1

]x

+2Ax−2z
3

[
2A1A2 + Az

1A
−z
2 + A−z

1 Az
2

]x

(86)

Let’s look at f1 and f4, their permutation sum cancels with each other because of the following
relations:

f1(A1, A2, A3) + f1(A1, A3, A2) =
−−→
(25) = Ax+z

1

[
A−z

2 A−z
3

]x−z =
−−→
(21) = −f4(A2, A3, A1)− f4(A3, A2, A1)

f1(A2, A3, A1) + f1(A2, A1, A3) =
−−→
(25) = Ax+z

2

[
A−z

3 A−z
1

]x−z =
−−→
(21) = −f4(A3, A1, A2)− f4(A1, A3, A2)

f1(A3, A1, A2) + f1(A3, A2, A1) =
−−→
(25) = Ax+z

3

[
A−z

1 A−z
2

]x−z =
−−→
(21) = −f4(A1, A2, A3)− f4(A2, A1, A3)

We then consider the following sums:

f2(A1, A2, A3) + f2(A1, A3, A2) = Ax
1

[
A2A

−z
3

]x−z + Ax
1

[
A3A

−z
2

]x−z =
−−→
(25) = Ax

1

[
A−z

2 A−z
3

]x

f2(A2, A3, A1) + f2(A2, A1, A3) =
−−→
(25) = Ax

2

[
A−z

3 A−z
1

]x

f2(A3, A1, A2) + f2(A3, A2, A1) =
−−→
(25) = Ax

3

[
A−z

1 A−z
2

]x

(87)
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f10(A1, A2, A3) + f10(A1, A3, A2) = 2Ax
1 [A2A3]

x−2z

f10(A2, A3, A1) + f10(A2, A1, A3) = 2Ax
2 [A3A1]

x−2z

f10(A3, A1, A2) + f10(A3, A2, A1) = 2Ax
3 [A1A2]

x−2z

(88)

f5(A1, A2, A3) + f5(A2, A1, A3) = −2Az
3

[
Ax−z

1 Ax−z
2

]−z

f5(A2, A3, A1) + f5(A3, A2, A1) = −2Az
1

[
Ax−z

2 Ax−z
3

]−z

f5(A3, A1, A2) + f5(A1, A3, A2) = −2Az
2

[
Ax−z

3 Ax−z
1

]−z

(89)

f8(A1, A2, A3) + f8(A1, A3, A2) = Ax−z
1

[
A2A

−z
3 + A−z

2 A3

]x

f8(A2, A3, A1) + f8(A2, A1, A3) = Ax−z
2

[
A3A

−z
1 + A−z

3 A1

]x

f8(A3, A1, A2) + f8(A3, A2, A1) = Ax−z
3

[
A1A

−z
2 + A−z

1 A2

]x

(90)

Finally we put the last 2 terms (f11 and f12) together, they look like the internal multiple integrals
studied in Weglein et. al. 2003, and Shaw et. al. 2002.

f11(A1, A2, A3) + f12(A1, A2, A3) = IM2

(
Ax

1 , A2, A
x+z
3

)
+ IM2 (Ax

1 , Ax
2 , Az

3)
f11(A1, A3, A2) + f12(A1, A3, A2) = IM2

(
Ax

1 , A3, A
x+z
2

)
+ IM2 (Ax

1 , Ax
3 , Az

2)
f11(A2, A3, A1) + f12(A2, A3, A1) = IM2

(
Ax

2 , A3, A
x+z
1

)
+ IM2 (Ax

2 , Ax
3 , Az

1)
f11(A2, A1, A3) + f12(A2, A1, A3) = IM2

(
Ax

2 , A1, A
x+z
3

)
+ IM2 (Ax

2 , Ax
1 , Az

3)
f11(A3, A1, A2) + f12(A3, A1, A2) = IM2

(
Ax

3 , A1, A
x+z
2

)
+ IM2 (Ax

3 , Ax
1 , Az

2)
f11(A3, A2, A1) + f12(A3, A2, A1) = IM2

(
Ax

3 , A2, A
x+z
1

)
+ IM2 (Ax

3 , Ax
2 , Az

1)

(91)

Finally we sum the terms in equations (86, 87, 88. 89, 90, 91) together to obtain the permutation
sum of 16SCleft3,2 . Remembering that fact that SCleft3,2 is only half of SC3,2, we have:

SC3,2(A1, A2, A3) =
2
16

(eq86 + eq87 + eq88 + eq89 + eq90 + eq91)

=
1
4




Ax−2z
1

[
2A2A3 + Az

2A
−z
3 + A−z

2 Az
3

]x

Ax−2z
2

[
2A3A1 + Az

3A
−z
1 + A−z

3 Az
1

]x

Ax−2z
3

[
2A1A2 + Az

1A
−z
2 + A−z

1 Az
2

]x




+
1
8




Ax
1

[
A−z

2 A−z
3

]x

Ax
2

[
A−z

3 A−z
1

]x

Ax
3

[
A−z

1 A−z
2

]x


 +

1
4




Ax
1 [A2A3]

x−2z

Ax
2 [A3A1]

x−2z

Ax
3 [A1A2]

x−2z


− 1

4




Az
3

[
Ax−z

1 Ax−z
2

]−z

Az
1

[
Ax−z

2 Ax−z
3

]−z

Az
2

[
Ax−z

3 Ax−z
1

]−z




+
1
8




Ax−z
1

[
A2A

−z
3 + A−z

2 A3

]x

Ax−z
2

[
A3A

−z
1 + A−z

3 A1

]x

Ax−z
3

[
A1A

−z
2 + A−z

1 A2

]x


 +

1
8




IM2

(
Ax

1 , A2, A
x+z
3

)
+ IM2 (Ax

1 , Ax
2 , Az

3)
IM2

(
Ax

1 , A3, A
x+z
2

)
+ IM2 (Ax

1 , Ax
3 , Az

2)
IM2

(
Ax

2 , A3, A
x+z
1

)
+ IM2 (Ax

2 , Ax
3 , Az

1)
IM2

(
Ax

2 , A1, A
x+z
3

)
+ IM2 (Ax

2 , Ax
1 , Az

3)
IM2

(
Ax

3 , A1, A
x+z
2

)
+ IM2 (Ax

3 , Ax
1 , Az

2)
IM2

(
Ax

3 , A2, A
x+z
1

)
+ IM2 (Ax

3 , Ax
2 , Az

1)




(92)
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If among the 3 terms A1, A2, A3, 2 of them are equal. We have:

SC3,2(A1, A1, A2) =
1
4

(
Ax−2z

1

[
2A2A1 + Az

2A
−z
1 + A−z

2 Az
1

]x

Ax−2z
2

[
A1A1 + Az

1A
−z
1

]x

)

+
1
16

(
2Ax

1

[
A−z

1 A−z
2

]x

Ax
2

[
A−z

1 A−z
1

]x

)
+

1
8

(
2Ax

1 [A1A2]
x−2z

Ax
2 [A1A1]

x−2z

)
− 1

8

(
Az

2

[
Ax−z

1 Ax−z
1

]−z

2Az
1

[
Ax−z

1 Ax−z
2

]−z

)

+
1
8

(
Ax−z

1

[
A1A

−z
2 + A−z

1 A2

]x

Ax−z
2

[
A1A

−z
1

]x

)
+

1
16



IM2

(
Ax

1 , A1, A
x+z
2

)
+ IM2 (Ax

1 , Ax
1 , Az

2)
IM2

(
Ax

1 , A2, A
x+z
1

)
+ IM2 (Ax

1 , Ax
2 , Az

1)
IM2

(
Ax

2 , A1, A
x+z
1

)
+ IM2 (Ax

2 , Ax
1 , Az

1)




(93)

If all three terms are the same A1 = A2 = A3 = A, we have:

SC3,2(A,A, A) =
1
4
Ax−2z

[
AA + AzA−z

]x +
1
16

Ax
[
A−zA−z

]x

+
1
8
Ax[AA]x−2z − 1

8
Az

[
Ax−zAx−z

]−z +
1
8
Ax−z

[
AA−z

]x

+
1
16
IM2

(
Ax, A, Ax+z

)
+

1
16
IM2 (Ax, Ax, Az)

=
1
4
Ax−2z

[
AA + AzA−z

]x +
1
16

Ax
[
A−zA−z

]x

+
1
8
Ax[AA]x−2z − 1

8
Az

[
Ax−zAx−z

]−z +
1
8
AAx−zAx−z +

1
16

Ax
[
A−zA−z

]x

+
1
16
IM2

(
Ax, A, Ax+z

)
+

1
16
IM2 (Ax, Ax, Az)

SC3,2(A,A,A) =
1
4
Ax−2z

[
AA + AzA−z

]x +
1
8
Ax[AA]x−2z

− 1
8
Az

[
Ax−zAx−z

]−z +
1
8
AAx−zAx−z +

1
8
Ax

[
A−zA−z

]x

+
1
16
IM2

(
Ax, A, Ax+z

)
+

1
16
IM2 (Ax, Ax, Az)

(94)

Evaluation of SC3,3 and SC3,3

We then Fourier transform S̃C3,3 (equation (80)) into (x, z) domain, and finish the x-wise integration
as below:
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SC3,3(x, z) =
1
2π

∞∫

−∞
dkmeikmxS̃C3,3(km, z)

=
2π

256π4

∞∫

−∞
dkmeikmx

∞∫

−∞
dk1

∞∫

−∞
dk2

∞∫

−∞
dz1Ã1(0.5km − k1, z1)

∞∫

−∞
dz2Ã2(k1 − k2, z2)

×
∞∫

−∞
dz3Ã3(k2 + 0.5km, z3)

(
k2

m + 2(k2
1 + k2

2)−
(ε1a1 + ε2a2)2

8

)
δ(ε0 + ε1 + ε2)

=
1

128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

(
I1 − ε2

1

8
I2 − ε1ε2

4
I3 − ε2

2

8
I4

)

=
1

128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

(
I1 − |z1 − z2|2

32
I2 − |z1 − z2| |z2 − z3|

16
I3 − |z2 − z3|2

32
I4

)

where I1, I2, I3, and I4 are defined below by Fourier transform over km:

I1 =

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m + 2k2
1 + 2k2

2

)

Using equation (127) we have

= 16π3
{

Ā1
2x

Ā2Ā3 + Ā1Ā2
2x

Ā3 + Ā1Ā2Ā3
2x + Ā1

x
Ā2

x
Ā3 + Ā1Ā2

x
Ā3

x
}

I2 =

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
1

)2

Using equation (128) we have

= 128π3Ā1
2x[

Ā2Ā3

]2x = 128π3Ā1
2x

{
Ā2

2x
Ā3 + 2Ā2

x
Ā3

x + Ā2Ā3
2x

}
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I3 =

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
1

) (
k2

m − 4k2
2

)

Using equation (129) we have

= 128π3
{

Ā1
2x

Ā2Ā3
2x + Ā1

2x
Ā2

x
Ā3

x + Ā1
x
Ā2

2x
Ā3

x + Ā1
x
Ā2

x
Ā3

2x
}

I4 =

∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
2

)2

Using equation (130) we have

= 128π3
[
Ā1Ā2

]2x
Ā3

2x = 128π3
{

Ā1
2x

Ā2 + 2Ā1
x
Ā2

x + Ā1Ā2
2x

}
Ā3

2x

where Ā1, Ā2, and Ā3 are functions of x and defined by:

Ā1(x) = A1(x, z1)
Ā2(x) = A2(x, z2)
Ā3(x) = A3(x, z3)

(95)

We then finish the z-wise integration. Because I1, I2, I3, and I4 will be multiplied by different
functions of z, and the product will be used as the integrand of the z-wise integral:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

We’d better to consider these integrals differently.

First let’s continue the integration of I1:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)I1

=
1
8

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

[
Ā1

2x
Ā2Ā3 + Ā1Ā2

2x
Ā3 + Ā1Ā2Ā3

2x

+Ā1
x
Ā2

x
Ā3 + Ā1Ā2

x
Ā3

x

]
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where Ā1, Ā2, and Ā3 are 3 functions of x and are defined in equation (95).

There are 5 terms in the I1, for the first term, Ā1
2x

Ā2Ā3 is actually ∂2A1(x,z1)
∂x2 A2(x, z2)A3(x, z3). If

we define: Ă1(z1) = ∂2A1(x,z1)
∂x2 , Ă2(z2) = A2(x, z2), Ă3(z3) = A3(x, z3), we can study the behavior

of the z-wise integral without worrying about the irregularities in the x-direction. And the z-wise
integral can be written as:

∞∫

−∞
dz1Ă1(z1)

∞∫

−∞
dz2Ă2(z2)

∞∫

−∞
dz3Ă3(z3)δ

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

=

∞∫

−∞
dz1δ (z1 − z) Ă1(z1)

z1∫

−∞
dz2Ă2(z2)

z2∫

−∞
dz3Ă3(z3)

+

∞∫

−∞
dz3δ (z3 − z) Ă3(z3)

z3∫

−∞
dz2Ă2(z2)

z2∫

−∞
dz1Ă1(z1)

+

∞∫

−∞
dz3δ (z2 − z) Ă2(z2)




z2∫

−∞
dz1Ă1(z1)







z2∫

−∞
dz3Ă3(z3)




+

∞∫

−∞
duδ (u− z)

u∫

−∞
dz3Ă3(z3)

u∫

−∞
dz1Ă1(z1)Ă2(z1 + z3 − u)

= Ă1

[
Ă2Ă

−z
3

]−z
+ Ă3

[
Ă2Ă

−z
1

]−z
+ Ă−z

1 Ă2Ă
−z
3 + IM1(Ă3, Ă2, Ă1)

The other 4 terms in I1 can be treated the same way, the z-wise integral is captured by the integral
above. We only need to change the definition of Ă1, Ă2, Ă3.

Let’s define 2 set of operators, the first set purely operate on x:

Π(1)
x = Π(1,1)

x + Π(1,2)
x + Π(1,3)

x + Π(1,4)
x + Π(1,5)

x

Π(1,2)
x = ∂x1∂x1 Π(1,2)

x = ∂x2∂x2 Π(1,3)
x = ∂x3∂x3 Π(1,4)

x =
1
8
∂x1∂x2 Π(1,5)

x = ∂x2∂x3

The input to the operators like Π(1)
x is actually the product of 3 terms, each of them is a function

of x. Even though the order of terms of a product doesn’t matter, but we define the operator in
such a way that the order is important, to facilitate the process of finding where each term comes
from.

For example, let’s consider the product f1(x)f2(x)f3(x) of 3 functions of x, will be changed by the
operator ∂x1∂x2 as follows:

∂x1∂x2 [f1(x)f2(x)f3(x)] =
∂f1(x)

∂x

∂f2(x)
∂x

f3(x)
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The output of the operators above will still be products, but to be considered as ordered as men-
tioned before. In the definition, the operators will change each factor, but not their relative order.

The output of the operators above will be input for the following z-wise operators. This time every
of the 3 factors in the product will be considered as function of z. And the z-wise operators will
be defined as:

Π(1)
z = Π(1,1)

z + Π(1,2)
z + Π(1,3)

z + Π(1,4)
z

Π(1,1)
z (A,B,C) = A

[
BC−z

]−z

Π(1,2)
z (A,B,C) = C

[
BA−z

]−z

Π(1,3)
z (A,B,C) = A−zBC−z

Π(1,4)
z (A,B,C) = IM1(C, B, A)

Because the output of Π(1)
z is final result, we don’t need to consider them as ordered. They are just

ordinary integrals, partial derivatives, and products.

In this operator notation, the z-wise integration of I1 can be simply written as:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)I1 =

1
8
Π(1)

z Π(1)
x (A1, A2, A3)

Let’s use a table to promptly identify the result of the successive application of the x and z-wise
operators.

Ă1 Ă2 Ă3 Ă1

[
Ă2Ă

−z
3

]−z
Ă3

[
Ă2Ă

−z
1

]−z
Ă−z

1 Ă2Ă
−z
3 IM1(Ă3, Ă2, Ă1)

A2x
1 A2 A3 Π(1,1)

z Π(1,2)
x Π(1,2)

z Π(1,2)
x Π(1,3)

z Π(1,2)
x Π(1,4)

z Π(1,2)
x

A1 A2x
2 A3 Π(1,1)

z Π(1,2)
x Π(1,2)

z Π(1,2)
x Π(1,3)

z Π(1,2)
x Π(1,4)

z Π(1,2)
x

A1 A2 A2x
3 Π(1,1)

z Π(1,3)
x Π(1,2)

z Π(1,3)
x Π(1,3)

z Π(1,3)
x Π(1,4)

z Π(1,3)
x

Ax
1 Ax

2 A3 Π(1,1)
z Π(1,4)

x Π(1,2)
z Π(1,4)

x Π(1,3)
z Π(1,4)

x Π(1,4)
z Π(1,4)

x

A1 Ax
2 Ax

3 Π(1,1)
z Π(1,5)

x Π(1,2)
z Π(1,5)

x Π(1,3)
z Π(1,5)

x Π(1,4)
z Π(1,5)

x

How to use the table above? For example, in this table Π(1,1)
z Π(1,1)

x is located in the second row, the
fourth column. In the second row, we have: Ă1 = A2x

1 , Ă2 = A2, and Ă3 = A3. And the topmost

element of the fourth-row is Ă1

[
Ă2Ă

−z
3

]−z
, we can simply substitute in values of Ă1, Ă2, and Ă3

obtained before to have:

Π(1,1)
z Π(1,1)

x (A1, A2, A3) = A2x
1

[
A2A

−z
3

]−z

Π(1,2)
z Π(1,3)

x (A1, A2, A3) = A2x
3

[
A2A

−z
1

]−z

Π(1,3)
z Π(1,2)

x (A1, A2, A3) = A2x
2 A−z

1 A−z
3
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Let’s denote the permutation sum of Π(1,1)
z Π(1,1)

x (A1, A2, A3) as
∑¯Π(1,1)

z Π(1,1)
x , that is:

∑̄
Π(1,1)

z Π(1,1)
x = Π(1,1)

z Π(1,1)
x (A1, A2, A3) + Π(1,1)

z Π(1,1)
x (A2, A3, A1) + Π(1,1)

z Π(1,1)
x (A3, A1, A2)

+ Π(1,1)
z Π(1,1)

x (A1, A3, A2) + Π(1,1)
z Π(1,1)

x (A2, A1, A3) + Π(1,1)
z Π(1,1)

x (A3, A2, A1)

we have:

∑̄
Π(1,1)

z Π(1,1)
x =

∑̄
Π(1,2)

z Π(1,3)
x =

1
2

∑̄
Π(1,3)

z Π(1,2)
x

and

∑̄(
Π(1,1)

z Π(1,1)
x + Π(1,2)

z Π(1,3)
x = Π(1,3)

z Π(1,2)
x

)

= 4
(
A2x

1 A−z
2 A−z

3 + A2x
2 A−z

3 A−z
1 + A2x

3 A−z
1 A−z

2

) (96)

Let’s consider the following terms:

Π(1,3)
z Π(1,1)

x (A1, A2, A3) = A2x−z
1 A2A

−z
3

=Π(1,3)
z Π(1,3)

x (A3, A2, A1) = A2

[
A2x

1 A−z
3

]−z + A2

[
A3A

2x−z
1

]−z

=Π(1,1)
z Π(1,2)

x (A2, A1, A3) + Π(1,1)
z Π(1,3)

x (A2, A3, A1) = A2

[
A2x

1 A−z
3

]−z + A2

[
A3A

2x−z
1

]−z

=Π(1,2)
z Π(1,2)

x (A3, A1, A2) + Π(1,2)
z Π(1,1)

x (A1, A3, A2)

It’s easy to find their permutation sums are the same:

∑̄
Π(1,3)

z Π(1,1)
x =

∑̄
Π(1,3)

z Π(1,3)
x =

∑̄
Π(1,1)

z Π(1,2)
x +

∑̄
Π(1,1)

z Π(1,3)
x =

∑̄
Π(1,2)

z Π(1,2)
x +

∑̄
Π(1,2)

z Π(1,1)
x ,

and

∑̄(
Π(1,3)

z Π(1,1)
x + Π(1,3)

z Π(1,3)
x + Π(1,1)

z Π(1,2)
x + Π(1,1)

z Π(1,3)
x + Π(1,2)

z Π(1,2)
x +

∑̄
Π(1,2)

z Π(1,1)
x

)

= 4
(

A2x−z
1 A2A

−z
3 + A2x−z

2 A3A
−z
1 + A2x−z

3 A1A
−z
2

A2x−z
1 A3A

−z
2 + A2x−z

3 A2A
−z
1 + A2x−z

2 A1A
−z
3

) (97)

Let’s have a look at the following terms:
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Π(1,1)
z Π(1,5)

x (A1, A2, A3) + Π(1,2)
z Π(1,4)

x (A2, A3, A1) = A1

[
Ax

2Ax−z
3

]−z + A1

[
Ax

3Ax−z
2

]−z = A1A
x−z
2 Ax−z

3

Π(1,1)
z Π(1,4)

x (A1, A2, A3) = Π(1,2)
z Π(1,5)

x (A3, A2, A1) = Ax
1

[
Ax

2A−z
3

]−z = Ax
1Ax−z

2 A−z
3 −Ax

1

[
Ax−z

2 A3

]−z

Π(1,3)
z Π(1,4)

x (A1, A2, A3) = Π(1,3)
z Π(1,5)

x (A3, A2, A1) = Ax
2Ax−z

1 A−z
3

The permutation sum of the terms above is:

∑̄(
Π(1,1)

z Π(1,5)
x + Π(1,2)

z Π(1,4)
x

)
= 2

(
A1A

x−z
2 Ax−z

3 + A2A
x−z
3 Ax−z

1 + A3A
x−z
1 Ax−z

2

)

∑̄(
Π(1,3)

z Π(1,4)
x + Π(1,3)

z Π(1,5)
x

)
= 2

(
Ax

1Ax−z
2 A−z

3 + Ax
2Ax−z

3 A−z
1 + Ax

3Ax−z
1 A−z

2

Ax
1Ax−z

3 A−z
2 + Ax

2Ax−z
1 A−z

3 + Ax
3Ax−z

2 A−z
1

)

∑̄(
Π(1,1)

z Π(1,4)
x + Π(1,2)

z Π(1,5)
x

)
= 2

(
Ax

1

[
Ax

2A−z
3

]−z + Ax
2

[
Ax

3A−z
1

]−z + Ax
3

[
Ax

1A−z
2

]−z

Ax
1

[
Ax

3A−z
2

]−z + Ax
2

[
Ax

1A−z
3

]−z + Ax
3

[
Ax

2A−z
1

]−z

)
(98)

Finally let’s consider terms involving higher-lower-higher relation:

Π(1,4)
z Π(1,1)

x (A1, A2, A3) = Π(1,4)
z Π(1,3)

x (A3, A2, A1) = IM1

(
A2x

1 , A2, A3

)

Π(1,4)
z Π(1,4)

x (A1, A2, A3) = Π(1,4)
z Π(1,5)

x (A3, A2, A1) = IM1 (Ax
1 , Ax

2 , A3)

Π(1,4)
z Π(1,2)

x (A1, A2, A3) = IM1

(
A1, A

2x
2 , A3

)

It’s easy to check the following relations:

∑̄
Π(1,4)

z Π(1,1)
x =

∑̄
Π(1,4)

z Π(1,3)
x =

(
IM1

(
A2x

1 , A2, A3

)
+ IM1

(
A2x

2 , A3, A1

)
+ IM1

(
A2x

3 , A1, A2

)
IM1

(
A2x

1 , A3, A2

)
+ IM1

(
A2x

2 , A1, A3

)
+ IM1

(
A2x

3 , A2, A1

)
)

∑̄
Π(1,4)

z Π(1,4)
x =

∑̄
Π(1,4)

z Π(1,5)
x(

IM1 (Ax
1 , Ax

2 , A3) + IM1 (Ax
2 , Ax

3 , A1) , IM1 (Ax
3 , Ax

1 , A2)
IM1 (Ax

1 , Ax
3 , A2) + IM1 (Ax

2 , Ax
1 , A3) , IM1 (Ax

3 , Ax
2 , A1)

)

∑̄
Π(1,4)

z Π(1,2)
x =

2
(
IM1

(
A1, A

2x
2 , A3

)
+ IM1

(
A2, A

2x
3 , A1

)
+ IM1

(
A3, A

2x
1 , A2

))

And naturally, we have:
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∑̄
Π(1,4)

z Π(1,1)
x +

∑̄
Π(1,4)

z Π(1,3)
x +

∑̄
Π(1,4)

z Π(1,4)
x +

∑̄
Π(1,4)

z Π(1,5)
x +

∑̄
Π(1,4)

z Π(1,2)
x

= 2
(
IM1

(
A2x

1 , A2, A3

)
+ IM1

(
A2x

2 , A3, A1

)
+ IM1

(
A2x

3 , A1, A2

)
IM1

(
A2x

1 , A3, A2

)
+ IM1

(
A2x

2 , A1, A3

)
+ IM1

(
A2x

3 , A2, A1

)
)

+ 2
(
IM1 (Ax

1 , Ax
2 , A3) + IM1 (Ax

2 , Ax
3 , A1) , IM1 (Ax

3 , Ax
1 , A2)

IM1 (Ax
1 , Ax

3 , A2) + IM1 (Ax
2 , Ax

1 , A3) , IM1 (Ax
3 , Ax

2 , A1)

)

+ 2
(
IM1

(
A1, A

2x
2 , A3

)
+ IM1

(
A2, A

2x
3 , A1

)
+ IM1

(
A3, A

2x
1 , A2

))

(99)

Summarizing the results obtained in equation (96, 97, 98, 99), we have:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)I1 =

1
8
Π(1)

z Π(1)
x (A1, A2, A3)

=
1
2

(
A2x

1 A−z
2 A−z

3 + A2x
2 A−z

3 A−z
1 + A2x

3 A−z
1 A−z

2

)

+
1
2

(
A2x−z

1 A2A
−z
3 + A2x−z

2 A3A
−z
1 + A2x−z

3 A1A
−z
2

A2x−z
1 A3A

−z
2 + A2x−z

3 A2A
−z
1 + A2x−z

2 A1A
−z
3

)

+
1
4

(
A1A

x−z
2 Ax−z

3 + A2A
x−z
3 Ax−z

1 + A3A
x−z
1 Ax−z

2

)

+
1
4

(
Ax

1Ax−z
2 A−z

3 + Ax
2Ax−z

3 A−z
1 + Ax

3Ax−z
1 A−z

2

Ax
1Ax−z

3 A−z
2 + Ax

2Ax−z
1 A−z

3 + Ax
3Ax−z

2 A−z
1

)

+
1
4

(
Ax

1

[
Ax

2A−z
3

]−z + Ax
2

[
Ax

3A−z
1

]−z + Ax
3

[
Ax

1A−z
2

]−z

Ax
1

[
Ax

3A−z
2

]−z + Ax
2

[
Ax

1A−z
3

]−z + Ax
3

[
Ax

2A−z
1

]−z

)

+
1
4

(
IM1

(
A2x

1 , A2, A3

)
+ IM1

(
A2x

2 , A3, A1

)
+ IM1

(
A2x

3 , A1, A2

)
IM1

(
A2x

1 , A3, A2

)
+ IM1

(
A2x

2 , A1, A3

)
+ IM1

(
A2x

3 , A2, A1

)
)

+
1
4

(
IM1 (Ax

1 , Ax
2 , A3) + IM1 (Ax

2 , Ax
3 , A1) , IM1 (Ax

3 , Ax
1 , A2)

IM1 (Ax
1 , Ax

3 , A2) + IM1 (Ax
2 , Ax

1 , A3) , IM1 (Ax
3 , Ax

2 , A1)

)

+
1
4

(
IM1

(
A1, A

2x
2 , A3

)
+ IM1

(
A2, A

2x
3 , A1

)
+ IM1

(
A3, A

2x
1 , A2

))

(100)

If among the 3 terms, A1, A2, A3, 2 of them are equal. Equation (100) can be written as:
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1
128π3

∫
I1 =

1
4

(
2A2x

1 A−z
1 A−z

2 + A2x
2 A−z

1 A−z
1

)

+
1
2

(
A2x−z

1 A1A
−z
2 + A2x−z

1 A2A
−z
1 + A2x−z

2 A1A
−z
1

)

+
1
8

(
2A1A

x−z
1 Ax−z

2 + A2A
x−z
1 Ax−z

1

)

+
1
4

(
Ax

1Ax−z
1 A−z

2 + Ax
1Ax−z

2 A−z
1 + Ax

2Ax−z
1 A−z

1

)

+
1
4

(
Ax

1

[
Ax

1A−z
2

]−z + Ax
1

[
Ax

2A−z
1

]−z + Ax
2

[
Ax

1A−z
1

]−z
)

+
1
4

(
IM1

(
A2x

1 , A1, A2

)
+ IM1

(
A2x

1 , A2, A1

)
+ IM1

(
A2x

2 , A1, A1

) )

+
1
4

(
IM1 (Ax

1 , Ax
1 , A2) + IM1 (Ax

1 , Ax
2 , A1) , IM1 (Ax

2 , Ax
1 , A1)

)

+
1
8

(
2IM1

(
A1, A

2x
1 , A2

)
+ IM1

(
A1, A

2x
2 , A1

))

(101)

If all three terms are the same A1 = A2 = A3 = A, we have:

1
128π3

∫
I1 =

1
4
A2xA−zA−z +

1
2
A2x−zAA−z +

1
8
AAx−zAx−z

+
1
4
AxAx−zA−z +

1
4
Ax

[
AxA−z

]−z +
1
4
IM1

(
A2x, A,A

)

+
1
4
IM1 (Ax, Ax, A) +

1
8
IM1

(
A,A2x, A

)

Rewrite AxAx−zA−z as 1
2Ax[A−zA−z]x, we have:

1
128π3

∫
I1 =

1
4
A2xA−zA−z +

1
2
A2x−zAA−z +

1
8
AAx−zAx−z

+
1
8
Ax

[
A−zA−z

]x +
1
4
Ax

[
AxA−z

]−z +
1
4
IM1

(
A2x, A, A

)

+
1
4
IM1 (Ax, Ax, A) +

1
8
IM1

(
A, A2x, A

)
(102)

Let’s check the second x-wise integral:

I2 = 128π3Ā1
2x[

Ā2Ā3

]2x = 128π3Ā1
2x

{
Ā2

2x
Ā3 + 2Ā2

x
Ā3

x + Ā2Ā3
2x

}

where Ā1, Ā2, and Ā3 are 3 functions of x and are defined in equation (95).

It will be input into the following z-wise integral:
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1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

−1
32

|z1 − z2|2 I2

= − 1
32

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2) |z1 − z2|2

[
Ā1

2x
Ā2

2x
Ā3 + 2Ā1

2x
Ā2

x
Ā3

x + Ā1
2x

Ā2Ā3
2x

]

Just like the case discussed for integration over I1, the z-wise integration over I2 will be look like:

∞∫

−∞
dz1Ă1(z1)

∞∫

−∞
dz2Ă2(z2)

∞∫

−∞
dz3Ă3(z3) (z1 − z2)

2 δ

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

=

∞∫

−∞
dz1δ (z1 − z) Ă1(z1)

z1∫

−∞
dz2 (z1 − z2)

2 Ă2(z2)

z2∫

−∞
dz3Ă3(z3)

+

∞∫

−∞
dz3δ (z3 − z) Ă3(z3)

z3∫

−∞
dz2Ă2(z2)

z2∫

−∞
dz1 (z1 − z2)

2 Ă1(z1)

+

∞∫

−∞
dz3δ (z2 − z) Ă2(z2)




z2∫

−∞
dz1 (z1 − z2)

2 Ă1(z1)







z2∫

−∞
dz3Ă3(z3)




+

∞∫

−∞
duδ (u− z)

u∫

−∞
dz3 (u− z3)

2 Ă3(z3)

u∫

−∞
dz1Ă1(z1)Ă2(z1 + z3 − u)

= Ă1

[
Ă2Ă

−z
3

]−3z
+ Ă3

[
Ă2Ă

−3z
1

]−z
+ Ă−3z

1 Ă2Ă
−z
3 + IM3(Ă3, Ă2, Ă1)

Just as before, let’s define 2 set operations:

Π(2)
x = Π(2,1)

x + Π(2,2)
x + Π(2,3)

x

Π(2,1)
x = ∂x1∂x1∂x2∂x2 Π(2,2)

x = 2∂x1∂x1∂x2∂x3 Π(2,3)
x = ∂x1∂x1∂x3∂x3

Π(2)
z = Π(2,1)

z + Π(2,2)
z + Π(2,3)

z + Π(2,4)
z

Π(2,1)
z (A, B,C) = A

[
BC−z

]−3z Π(2,2)
z (A,B, C) = C

[
BA−z

]−3z

Π(2,3)
z (A, B,C) = A−3zBC−z Π(2,4)

z (A,B, C) = IM3(A, B,C)

Expressed by operators above, the z-wise integral over I2 is Π(2)
z Π(2)

x . We can use a table to clearly
denote the result of successive application of those x- and z-wise operators:
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fac Ă1 Ă2 Ă3 Ă1

[
Ă2Ă

−z
3

]3z
Ă3

[
Ă2Ă

−3z
1

]−z
Ă−3z

1 Ă2Ă
−z
3 IM3(Ă1, Ă2, Ă3)

A2x
1 A2x

2 A3 Π(2,1)
z Π(2,1)

x Π(2,2)
z Π(2,1)

x Π(2,3)
z Π(2,1)

x Π(2,4)
z Π(2,1)

x

2 A2x
1 Ax

2 Ax
3 Π(2,1)

z Π(2,2)
x Π(2,2)

z Π(2,2)
x Π(2,3)

z Π(2,2)
x Π(2,4)

z Π(2,2)
x

A2x
1 A2 A2x

3 Π(2,1)
z Π(2,3)

x Π(2,2)
z Π(2,3)

x Π(2,3)
z Π(2,3)

x Π(2,4)
z Π(2,3)

x

Because of the following relations:

Π(2,1)
z Π(2,1)

z (A1, A2, A3) + Π(2,1)
z Π(2,3)

z (A1, A3, A2) = A2x
1

[
A2x

2 A−z
3

]−3z + A2x
1

[
A3A

2x−z
2

]−3z

=
−−→
(25) = A2x

1

[
A2x−z

2 A−z
3

]−2z

Π(2,1)
z Π(2,1)

z (A1, A3, A2) + Π(2,1)
z Π(2,3)

z (A1, A2, A3) = A2x
1

[
A2x

3 A−z
2

]−3z + A2x
1

[
A2A

2x−z
3

]−3z

=
−−→
(25) = A2x

1

[
A2x−z

3 A−z
2

]−2z

Π(2,1)
z Π(2,2)

z (A1, A2, A3) + Π(2,1)
z Π(2,2)

z (A1, A3, A2) = 2A2x
1

[
Ax

2Ax−z
3

]−3z + 2A2x
1

[
Ax

3Ax−z
2

]−3z

=
−−→
(25) = 2A2x

1

[
Ax−z

2 Ax−z
3

]−2z

A2x
1

[
A2x−z

2 A−z
3

]−2z + 2A2x
1

[
Ax−z

2 Ax−z
3

]−2z + A2x
1

[
A2x−z

3 A−z
2

]−2z =
−−→
(21) = A2x

1

[
A−z

2 A−z
3

]2x−2z

We have:

∑̄
Π(2,1)

z Π(2,1)
x (A1, A2, A3) +

∑̄
Π(2,1)

z Π(2,1)
x (A1, A2, A3) +

∑̄
Π(2,1)

z Π(2,1)
x (A1, A2, A3)

=A2x
1

[
A−z

2 A−z
3

]2x−2z + A2x
2

[
A−z

3 A−z
1

]2x−2z + A2x
3

[
A−z

1 A−z
2

]2x−2z
(103)

Let’s look at the following terms:

Π(2,2)
z Π(2,1)

x (A1, A2, A3) = A3

[
A2x

2 A2x−3z
3

]−z = A3A
2x−z
2 A2x−3z

1 −A3

[
A2x−z

2 A2x−2z
1

]−z

Π(2,2)
z Π(2,2)

x (A1, A2, A3) = 2Ax
3Ax−z

2 A2x−3z
1 − 2Ax

3

[
Ax−z

2 A2x−2z
1

]−z

Π(2,2)
z Π(2,3)

x (A1, A2, A3) = A2x
3 A−z

2 A2x−3z
1 −A2x

3

[
A−z

2 A2x−2z
1

]−z

Let’s group all 3 first terms after the last 3 “=” sign, and denote the result by a function
f1(A1, A2, A3). And the remaining part is denoted as f2(A1, A2, A3). The reason for this breakup
is trying to make the integrals and derivatives distributed as balanced as possible.

f1(A1, A2, A3) = A3A
2x−z
2 A2x−3z

1 + 2Ax
3Ax−z

2 A2x−3z
1 + A2x

3 A−z
2 A2x−3z

1 = A2x−3z
1

[
A3A

−z
2

]2x

f2(A1, A2, A3) = −A3

[
A2x−z

2 A2x−2z
1

]−z − 2Ax
3

[
Ax−z

2 A2x−2z
1

]−z −A2x
3

[
A−z

2 A2x−2z
1

]−z

Π(2,2)
z

[
Π(2,1)

x + Π(2,2)
x + Π(2,3)

x

]
(A1, A2, A3) = f1(A1, A2, A3) + f2(A1, A2, A3)

And f1(A1, A2, A3) is equivalent to the following:
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Π(2,3)
z

[
Π(2,1)

x + Π(2,2)
x + Π(2,3)

x

]
(A1, A3, A2) = A2x−3z

1

[
A3A

−z
2

]2x

So their permutation sums are actually the same:

∑̄[
Π(2,3)

z Π(2,1)
x + Π(2,3)

z Π(2,2)
x + Π(2,3)

z Π(2,3)
x + f1

]
(A1, A2, A3)

= 2

(
A2x−3z

1

[
A3A

−z
2

]2x + A2x−3z
2

[
A1A

−z
3

]2x + A2x−3z
3

[
A2A

−z
1

]2x

A2x−3z
1

[
A2A

−z
3

]2x + A2x−3z
2

[
A3A

−z
1

]2x + A2x−3z
3

[
A1A

−z
2

]2x

) (104)

We summarize the permutation sum of f2 as follows.

∑̄
f2 =− (

A1A
2x−2z
2 A2x−2z

3 + A2A
2x−2z
3 A2x−2z

1 + A3A
2x−2z
1 A2x−2z

2

)

− 2

(
Ax

1

[
Ax−z

2 A2x−2z
3

]−z + Ax
2

[
Ax−z

3 A2x−2z
1

]−z + Ax
3

[
Ax−z

1 A2x−2z
2

]−z

Ax
1

[
Ax−z

3 A2x−2z
2

]−z + Ax
2

[
Ax−z

1 A2x−2z
3

]−z + Ax
3

[
Ax−z

2 A2x−2z
1

]−z

)

−
(

A2x
1

[
A−z

2 A2x−2z
3

]−z + A2x
2

[
A−z

3 A2x−2z
1

]−z + A2x
3

[
A−z

1 A2x−2z
2

]−z

A2x
1

[
A−z

3 A2x−2z
2

]−z + A2x
2

[
A−z

1 A2x−2z
3

]−z + A2x
3

[
A−z

2 A2x−2z
1

]−z

)
(105)

Finally let’s look at the portion which lower-higher-lower relation relations between adjacent scat-
ters:

Π(2,4)
z

[
Π(2,1)

x + Π(2,2)
x + Π(2,3)

x

]
(A1, A2, A3)

= IM3

(
A2x

1 , A2x
2 , A3

)
+ 2IM3

(
A2x

1 , Ax
2 , Ax

3

)
+ IM3

(
A2x

1 , A2, A
2x
3

)

= IM3X (A1, A2, A3)

The last step in the equations above move the x-wise operations inside the z-wise integral. In
summary, their permutation sum can be written as:

∑̄
Π(2,4)

z

[
Π(2,1)

x + Π(2,2)
x + Π(2,3)

x

]
=



IM3X (A1, A2, A3) + IM3X (A2, A3, A1)
IM3X (A3, A1, A2) + IM3X (A1, A3, A2)
IM3X (A2, A1, A3) + IM3X (A3, A2, A1)


 (106)

Finally we sum the terms in equations (103, 104, 105, 106) together to obtain the permutation sum
of −32 times the z-wise integral over I2. Because the permutation sum of the z-wise integral over
I4 is actually equivalent to that of I2 (this fact will be proved shortly after), we can simply express
their sum by multiplying a factor of 2:
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1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3

(
−(z1 − z2)

2

32
I2 − (z2 − z3)

2

32
I4

)

=− 1
16

(eq103 + eq104 + eq105 + eq106)

=− 1
16

(
A2x

1

[
A−z

2 A−z
3

]2x−2z + A2x
2

[
A−z

3 A−z
1

]2x−2z + A2x
3

[
A−z

1 A−z
2

]2x−2z
)

− 1
8

(
A2x−3z

1

[
A3A

−z
2

]2x + A2x−3z
2

[
A1A

−z
3

]2x + A2x−3z
3

[
A2A

−z
1

]2x

A2x−3z
1

[
A2A

−z
3

]2x + A2x−3z
2

[
A3A

−z
1

]2x + A2x−3z
3

[
A1A

−z
2

]2x

)

+
1
16

(
A1A

2x−2z
2 A2x−2z

3 + A2A
2x−2z
3 A2x−2z

1 + A3A
2x−2z
1 A2x−2z

2

)

+
1
8

(
Ax

1

[
Ax−z

2 A2x−2z
3

]−z + Ax
2

[
Ax−z

3 A2x−2z
1

]−z + Ax
3

[
Ax−z

1 A2x−2z
2

]−z

Ax
1

[
Ax−z

3 A2x−2z
2

]−z + Ax
2

[
Ax−z

1 A2x−2z
3

]−z + Ax
3

[
Ax−z

2 A2x−2z
1

]−z

)

+
1
16

(
A2x

1

[
A−z

2 A2x−2z
3

]−z + A2x
2

[
A−z

3 A2x−2z
1

]−z + A2x
3

[
A−z

1 A2x−2z
2

]−z

A2x
1

[
A−z

3 A2x−2z
2

]−z + A2x
2

[
A−z

1 A2x−2z
3

]−z + A2x
3

[
A−z

2 A2x−2z
1

]−z

)

− 1
16



IM3X (A1, A2, A3) + IM3X (A2, A3, A1)
IM3X (A3, A1, A2) + IM3X (A1, A3, A2)
IM3X (A2, A1, A3) + IM3X (A3, A2, A1)




(107)

If among these three scatters: A1, A2, A3, there are only 2 distinct ones. We have:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3

(
−(z1 − z2)

2

32
I2 − (z2 − z3)

2

32
I4

)

=− 1
32

(
2A2x

1

[
A−z

1 A−z
2

]2x−2z + A2x
2

[
A−z

1 A−z
1

]2x−2z
)

− 1
8

(
A2x−3z

1

[
A2A

−z
1

]2x + A2x−3z
1

[
A1A

−z
2

]2x + A2x−3z
2

[
A1A

−z
1

]2x
)

+
1
32

(
2A1A

2x−2z
1 A2x−2z

2 + A2A
2x−2z
1 A2x−2z

1

)

+
1
8

(
Ax

1

[
Ax−z

1 A2x−2z
2

]−z + Ax
1

[
Ax−z

2 A2x−2z
1

]−z + Ax
2

[
Ax−z

1 A2x−2z
1

]−z
)

+
1
16

(
2A2x

1

[
A−z

1 A2x−2z
2

]−z + A2x
2

[
A−z

1 A2x−2z
1

]−z
)

− 1
16

(
IM3X (A1, A1, A2) + IM3X (A1, A2, A1) + IM3X (A2, A1, A1)

)

(108)

If all 3 scatters are identical: A1 = A2 = A3 = A, we have:
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1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3

(
−(z1 − z2)

2

32
I2 − (z2 − z3)

2

32
I4

)

=− 1
32

A2x
[
A−zA−z

]2x−2z − 1
8
A2x−3z

[
AA−z

]2x +
1
32

AA2x−2zA2x−2z

+
1
8
Ax

[
Ax−zA2x−2z

]−z +
1
16

A2x
[
A−zA2x−2z

]−z − 1
16
IM3X (A,A, A)

(109)

Let’s check the fourth x-wise integral:

I4 = 128π3
[
Ā1Ā2

]2x
Ā3

2x = 128π3
{

Ā1
2x

Ā2 + 2Ā1
x
Ā2

x + Ā1Ā2
2x

}
Ā3

2x

where Ā1, Ā2, and Ā3 are 3 functions of x and are defined in equation (95).

The integration result over I4 is actually identical to that of I2 (with different arguments). This
means that their permutation sums are the same. The proof is as follows. This time let’s explicitly
consider I4 as a function of (A1, A2, A3).

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ (ε0 + ε1 + ε2) I4(A1, A2, A3)

=

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

×
∞∫

−∞
dx1A1(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A3(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
2

)2

Let’s define the following change of variables: k′1 = −k2 k′2 = −k1, x1 = x′3, x2 = x′2, x3 = x′1,
z′2 = z2, z′1 = z3, z′3 = z1, we can change the integration above into:

=

∞∫

−∞
dz′1

∞∫

−∞
dz′2

∞∫

−∞
dz′3δ

(
z′1 + z′3

2
− z +

|z′1 − z′2|
2

+
|z′2 − z′3|

2

)

×
∞∫

−∞
dx′1A3(x′1, z

′
1)

∞∫

−∞
dx′2A2(x′2, z

′
2)

∞∫

−∞
dx′3A1(x′3, z

′
3)

∞∫

−∞
dkmeikm(x−0.5x′1−0.5x′3)

×
∞∫

−∞
dk′2e

ik′2(x′2−x′3)

∞∫

−∞
dk′1e

ik′1(x′1−x′2)
(
k2

m − 4k′21
)2
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Please notice that all the integration variables with prime sign, because all this integration variables
are dummy, we get the same expression if we remove the primes from them.

=

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ

(
z1 + z3

2
− z +

|z1 − z2|
2

+
|z2 − z3|

2

)

×
∞∫

−∞
dx1A3(x1, z1)

∞∫

−∞
dx2A2(x2, z2)

∞∫

−∞
dx3A1(x3, z3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk2e

ik2(x2−x3)

∞∫

−∞
dk1e

ik1(x1−x2)
(
k2

m − 4k2
1

)2

=

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ (ε0 + ε1 + ε2) I2(A3, A2, A1)

Finally let’s consider the third x-wise integral:

I3 = 128π3
{

Ā1
2x

Ā2Ā3
2x + Ā1

2x
Ā2

x
Ā3

x + Ā1
x
Ā2

2x
Ā3

x + Ā1
x
Ā2

x
Ā3

2x
}

where Ā1, Ā2, and Ā3 are 3 functions of x and are defined in equation (95).

It will be input into the following z-wise integral:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2)

−1
16

|z1 − z2| |z2 − z3| I3

= − 1
16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3δ(ε0 + ε1 + ε2) |z1 − z2| |z2 − z3|

×
[
Ā1

2x
Ā2Ā3

2x + Ā1
2x

Ā2
x
Ā3

x + Ā1
x
Ā2

2x
Ā3

x + Ā1
x
Ā2

x
Ā3

2x
]

It’s corresponding z-wise integral looks like:
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∞∫

−∞
dz1Ă1(z1)

∞∫

−∞
dz2Ă2(z2)

∞∫

−∞
dz3Ă3(z3)|z1 − z2||z2 − z3|δ (ε0 + ε1 + ε2)

=

∞∫

−∞
dz1δ (z1 − z) Ă1(z1)

z1∫

−∞
dz2 (z1 − z2) Ă2(z2)

z2∫

−∞
dz3 (z2 − z3) Ă3(z3)

+

∞∫

−∞
dz3δ (z3 − z) Ă3(z3)

z3∫

−∞
dz2 (z3 − z2) Ă2(z2)

z2∫

−∞
dz1 (z2 − z1) Ă1(z1)

+

∞∫

−∞
dz3δ (z2 − z) Ă2(z2)




z2∫

−∞
dz1 (z2 − z1) Ă1(z1)







z2∫

−∞
dz3 (z2 − z3) Ă3(z3)




+

∞∫

−∞
duδ (u− z)

u∫

−∞
dz3 (u− z3) Ă3(z3)

u∫

−∞
dz1 (u− z1) Ă1(z1)Ă2(z1 + z3 − u)

= Ă1

[
Ă2Ă

−2z
3

]−2z
+ Ă3

[
Ă2Ă

−2z
1

]−2z
+ Ă−2z

1 Ă2Ă
−2z
3 + IM4(Ă3, Ă2, Ă1)

Just like before, the integration can be summarized by 2 sets of operators:

Π(3)
x = Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

Π(3,1)
x = ∂x1∂x1∂x3∂x3 Π(3,2)

x = ∂x1∂x1∂x2∂x3 Π(3,3)
x = ∂x1∂x2∂x2∂x3 Π(3,4)

x = ∂x1∂x2∂x3∂x3

Π(3)
z = Π(3,1)

z + Π(3,2)
z + Π(3,3)

z + Π(3,4)
z

Π(3,1)
z (A,B, C) = A

[
BC−2z

]−2z Π(3,2)
z (A,B, C) = C

[
BA−2z

]−2z

Π(3,3)
z (A,B, C) = A−2zBC−2z Π(3,4)

z (A,B,C) = IM4(A,B, C)

Ă1 Ă2 Ă3 Ă1

[
Ă2Ă

−2z
3

]−2z
Ă3

[
Ă2Ă

−2z
1

]−2z
Ă−2z

1 Ă2Ă
−2z
3 IM4(Ă1, Ă2, Ă3)

A2x
1 A2 A2x

3 Π(3,1)
z Π(3,1)

x Π(3,2)
z Π(3,1)

x Π(3,3)
z Π(3,1)

x Π(3,4)
z Π(3,1)

x

A2x
1 Ax

2 Ax
3 Π(3,1)

z Π(3,2)
x Π(3,2)

z Π(3,2)
x Π(3,3)

z Π(3,2)
x Π(3,4)

z Π(3,2)
x

Ax
1 A2x

2 Ax
3 Π(3,1)

z Π(3,3)
x Π(3,2)

z Π(3,3)
x Π(3,3)

z Π(3,3)
x Π(3,4)

z Π(3,3)
x

Ax
1 Ax

2 A2x
3 Π(3,1)

z Π(3,4)
x Π(3,2)

z Π(3,4)
x Π(3,3)

z Π(3,4)
x Π(3,4)

z Π(3,4)
x

With the help of the table above, it’s easy to check:

Π(3,1)
z Π(3,1)

x (A1, A2, A3) = A2x
1

[
A2A

2x−2z
3

]−2z = Π(3,2)
z Π(3,1)

x (A3, A2, A1)

Π(3,1)
z Π(3,2)

x (A1, A2, A3) = A2x
1

[
Ax

2Ax−2z
3

]−2z = Π(3,2)
z Π(3,4)

x (A3, A2, A1)

Π(3,1)
z Π(3,3)

x (A1, A2, A3) = Ax
1

[
A2x

2 Ax−2z
3

]−2z = Π(3,2)
z Π(3,3)

x (A3, A2, A1)

Π(3,1)
z Π(3,4)

x (A1, A2, A3) = Ax
1

[
Ax

2A2x−2z
3

]−2z = Π(3,2)
z Π(3,2)

x (A3, A2, A1)

242



Multidimensional inverse scattering series: application to imaging MOSRP04

¿From the relations above, it’s easy to find that the following 2 permutation sums are equal:

∑̄
Π(3,1)

z

[
Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

]
=

∑̄
Π(3,2)

z

[
Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

]

and because:

Π(3,1)
z

[
Π(3,1)

x + Π(3,2)
x

]
(A1, A2, A3) = A2x

1

[
A2A

x−2z
3

]x−2z

Π(3,1)
z

[
Π(3,3)

x + Π(3,4)
x

]
(A1, A2, A3) = Ax

1

[
Ax

2Ax−2z
3

]x−2z

We can group the permutation sum of the following terms as:

∑̄[
Π(3,1)

z + Π(3,2)
z

] [
Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

]

= 2

(
A2x

1

[
A2A

x−2z
3

]x−2z + A2x
2

[
A3A

x−2z
1

]x−2z + A2x
3

[
A1A

x−2z
2

]x−2z

A2x
1

[
A3A

x−2z
2

]x−2z + A2x
2

[
A1A

x−2z
3

]x−2z + A2x
3

[
A2A

x−2z
1

]x−2z

)

+ 2

(
Ax

1

[
Ax

2Ax−2z
3

]x−2z + Ax
2

[
Ax

3Ax−2z
1

]x−2z + Ax
3

[
Ax

1Ax−2z
2

]x−2z

Ax
1

[
Ax

3Ax−2z
2

]x−2z + Ax
2

[
Ax

1Ax−2z
3

]x−2z + Ax
3

[
Ax

2Ax−2z
1

]x−2z

)
(110)

In the high-low hierarchy, equation (110) summarizes 2 of them: z1 ≥ z2 ≥ z3 (l = 1), z1 ≤ z2 ≤ z3

(l = 4).

We then consider the following terms:

Π(3,3)
z Π(3,1)

x (A1, A2, A3) + Π(3,3)
z Π(3,2)

x (A1, A2, A3) = A2x−2z
1

[
A2A

x−2z
3

]x

Π(3,3)
z Π(3,3)

x (A1, A2, A3) + Π(3,3)
z Π(3,4)

x (A1, A2, A3) = Ax−2z
1 [Ax

2Ax
3 ]x

The permutation sum of the terms above are:

∑̄
Π(3,3)

z

[
Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

]

=
(

A2x−2z
1

[
A2A

x−2z
3

]x + A2x−2z
2

[
A3A

x−2z
1

]x + A2x−2z
3

[
A1A

x−2z
2

]x

A2x−2z
1

[
A3A

x−2z
2

]x + A2x−2z
2

[
A1A

x−2z
3

]x + A2x−2z
3

[
A2A

x−2z
1

]x

)

+
(

Ax−2z
1

[
Ax

2Ax−2z
3

]x + Ax−2z
2

[
Ax
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1
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3

[
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1

[
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2
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2

[
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3
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3

[
Ax

2Ax−2z
1

]x

)
(111)

In the high-low hierarchy, equation (111) summarizes the following: z1 ≤ z2 ≥ z3 (l = 3).
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We now consider the terms in the high-low hierarchy, corresponding to the w-diagram.

Π(3,4)
z

[
Π(3,1)

x + Π(3,2)
x

]
= IM4

(
A2x

1 , A2, A
2x
3

)
+ IM4

(
A2x

1 , Ax
2 , Ax

3

)
= IM4X (Ax

1 , A2, A
x
3)

Π(3,4)
z

[
Π(3,3)

x + Π(3,4)
x

]
= IM4

(
Ax

1 , A2x
2 , Ax

3

)
+ IM4

(
Ax

1 , Ax
2 , A2x

3

)
= IM4X (A1, A

x
2 , Ax

3)

The permutation sum of the terms above are:

∑̄
Π(3,4)

z

[
Π(3,1)

x + Π(3,2)
x + Π(3,3)

x + Π(3,4)
x

]

=
(
IM4X (Ax

1 , A2, A
x
3) + IM4X (Ax

2 , A3, A
x
1) + IM4X (Ax

3 , A1, A
x
2)

IM4X (Ax
1 , A3, A

x
2) + IM4X (Ax

2 , A1, A
x
3) + IM4X (Ax

3 , A2, A
x
1)

)

+
(
IM4X (A1, A

x
2 , Ax

3) + IM4X (A2, A
x
3 , Ax
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x
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2)
IM4X (A1, A

x
3 , Ax
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x
1 , Ax

3) + IM4X (A3, A
x
2 , Ax

1)

)
(112)

In the high-low hierarchy, equation (112) summarizes the following: z1 ≥ z2 ≤ z3 (l = 2).

Finally we sum the terms in equations (110, 111, 112) together to obtain the permutation sum of
−16 times the z-wise integral over I3. We have:

1
128π3
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−∞
dz1
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−∞
dz2
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(
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3

[
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1
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)

− 1
8
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1

[
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3

]x−2z + Ax
2

[
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3Ax−2z
1
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3

[
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2
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1

[
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3Ax−2z
2
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2

[
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1Ax−2z
3

]x−2z + Ax
3

[
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2Ax−2z
1

]x−2z

)

− 1
16

(
A2x−2z

1

[
A2A

x−2z
3

]x + A2x−2z
2

[
A3A

x−2z
1

]x + A2x−2z
3

[
A1A

x−2z
2

]x

A2x−2z
1

[
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x−2z
2
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2

[
A1A

x−2z
3

]x + A2x−2z
3

[
A2A

x−2z
1

]x

)

− 1
16

(
Ax−2z

1

[
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2Ax−2z
3
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2

[
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3Ax−2z
1

]x + Ax−2z
3

[
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2

]x
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1

[
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3Ax−2z
2
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2

[
Ax

1Ax−2z
3

]x + Ax−2z
3

[
Ax

2Ax−2z
1

]x

)

− 1
16

(
IM4X (Ax

1 , A2, A
x
3) + IM4X (Ax

2 , A3, A
x
1) + IM4X (Ax

3 , A1, A
x
2)

IM4X (Ax
1 , A3, A

x
2) + IM4X (Ax

2 , A1, A
x
3) + IM4X (Ax

3 , A2, A
x
1)

)

− 1
16

(
IM4X (A1, A

x
2 , Ax

3) + IM4X (A2, A
x
3 , Ax

1) + IM4X (A3, A
x
1 , Ax

2)
IM4X (A1, A

x
3 , Ax

2) + IM4X (A2, A
x
1 , Ax

3) + IM4X (A3, A
x
2 , Ax

1)

)

(113)

If among the 3 scatters A1, A2, A3, there are only 2 distinct ones. We have:
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1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3

(
−|z1 − z2| |z2 − z3|

16

)
I3

=− 1
8

(
A2x

1

[
A1A

x−2z
2

]x−2z + A2x
1

[
A2A

x−2z
1

]x−2z + A2x
2

[
A1A

x−2z
1

]x−2z
)

− 1
8

(
Ax

1

[
Ax

1Ax−2z
2

]x−2z + Ax
1

[
Ax

2Ax−2z
1

]x−2z + Ax
2

[
Ax

1Ax−2z
1

]x−2z
)

− 1
16

(
A2x−2z

1

[
A1A

x−2z
2

]x + A2x−2z
1

[
A2A

x−2z
1

]x + A2x−2z
2

[
A1A

x−2z
1

]x )

− 1
16

(
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1

[
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1Ax−2z
2
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1

[
Ax

2Ax−2z
1

]x + Ax−2z
2

[
Ax

1Ax−2z
1

]x )

− 1
16

(
IM4X (Ax

1 , A1, A
x
2) + IM4X (Ax

1 , A2, A
x
1) + IM4X (Ax

2 , A1, A
x
1)

)

− 1
16

(
IM4X (A1, A

x
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2) + IM4X (A1, A
x
2 , Ax

1) + IM4X (A2, A
x
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1)
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(114)

If all three scatters are identical: A1 = A2 = A3 = A, we have:

1
128π3

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dz3

(
−|z1 − z2| |z2 − z3|

16

)
I3

=− 1
16

(
2A2x

[
AAx−2z

]x−2z + 2Ax
[
AxAx−2z

]x−2z + A2x−2z
[
AAx−2z

]x

Ax−2z
[
AxAx−2z

]x + IM4X (Ax, A, Ax) + IM4X (A,Ax, Ax)

) (115)

Let’s summarize SC3 for the simplest case: A1 = A2 = A3 = A, that is, results from the following
equations will be summed together: ( 84, 94, 102, 109, 115, 81).

SC3(A,A, A) = −1
8
A2zA−zA−z − 3

4
AzAA−z − 5

16
A3 − 1

8
Az

[
A2

]−z − 1
16
IM1(Az, A, Az)

+
1
4
Ax−2z

[
AA + AzA−z

]x +
1
8
Ax[AA]x−2z − 1

8
Az

[
Ax−zAx−z

]−z

+
1
4
AAx−zAx−z +

1
4
Ax

[
A−zA−z

]x +
1
16
IM2

(
Ax, A,Ax+z

)
+

1
16
IM2 (Ax, Ax, Az)

+
1
4
A2xA−zA−z +

1
2
A2x−zAA−z

+
1
4
Ax

[
AxA−z

]−z +
1
4
IM1

(
A2x, A, A

)
+

1
4
IM1 (Ax, Ax, A) +

1
8
IM1

(
A,A2x, A

)

− 1
32

A2x
[
A−zA−z

]2x−2z − 1
8
A2x−3z

[
AA−z

]2x +
1
32

AA2x−2zA2x−2z

+
1
8
Ax

[
Ax−zA2x−2z

]−z +
1
16

A2x
[
A−zA2x−2z

]−z − 1
16
IM3X (A,A, A)

− 1
8

[
Ax

{
Ax−2z

}2
]x

+
1
8
Ax

[{
Ax−z

}2
]x−2z

− 1
16

A
{
A2x−2z

}2 − 1
8
A2x

[
A−zA2x−2z

]−z

+
1
16

A2x
[{

A−z
}2

]2x−2z
+ IM4X (Ax, A, Ax) + IM4X (A,Ax, Ax)

(116)
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In the equation above, the fourth term of equation (102) and the third term of equation (109) are
merged together because they are identical. Similarly, the fifth term of equation (102) is merged
with the fourth term of equation (109) because their equivalence.
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Appendix F: Derivation of α3

The equation for α3:

α3 = SC3 (α1, α1, α1) + SC2 (α1, α2)

First let’s compute SC3 (α1, α1, α1) using equation (116) by simply substituting A = α1:

SC3(α1, α1, α1) = −1
8
α2z

1 α−z
1 α−z

1 − 3
4
αz

1α1α
−z
1 − 5

16
α3

1 −
1
8
αz

1

[
α2

1

]−z − 1
16
IM1(αz

1, α1, α
z
1)

+
1
4
αx−2z

1

[
α1α1 + αz

1α
−z
1

]x +
1
8
αx

1 [α1α1]
x−2z − 1

8
αz

1

[
αx−z

1 αx−z
1

]−z

+
1
4
α1α

x−z
1 αx−z

1 +
1
4
αx

1

[
α−z

1 α−z
1

]x +
1
16
IM2

(
αx

1 , α1, α
x+z
1

)
+

1
16
IM2 (αx

1 , αx
1 , αz

1)

+
1
4
α2x

1 α−z
1 α−z

1 +
1
2
α2x−z

1 α1α
−z
1

+
1
4
αx

1

[
αx

1α−z
1

]−z +
1
4
IM1

(
α2x

1 , α1, α1

)
+

1
4
IM1 (αx

1 , αx
1 , α1) +

1
8
IM1

(
α1, α

2x
1 , α1

)

− 1
32

α2x
1

[
α−z

1 α−z
1

]2x−2z − 1
8
α2x−3z

1

[
α1α

−z
1

]2x +
1
32

α1α
2x−2z
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1

+
1
8
αx

1

[
αx−z

1 α2x−2z
1

]−z +
1
16

α2x
1

[
α−z

1 α2x−2z
1

]−z − 1
16
IM3X (α1, α1, α1)

− 1
8

[
αx

1

{
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1
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]x

+
1
8
αx

1
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1

}2
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− 1
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α1

{
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1

}2 − 1
8
α2x
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[
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+
1
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1
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x
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x
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(117)

We then calculate SC2 (α1, α2), which can be calculated by equation (67) as:

SC2 (α1, α2) = −1
2

(
2α1α2 + αz

1α
−z
2 + αz

2α−1−z
)

+
1
2
αx

1αx−2z
2 +

1
2
αx

2αx−2z
1

+ 2SC2,3,1 (α1, α2) + 2SC2,3,1 (α2, α1)
(118)

Ignoring the last term in α2, we have:
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α2 = −1
2

{
α2

1 + αz
1α
−z
1

}
+

1
2
αx

1αx−2z
1 = −1

2
[
α1α
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1
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1
2
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1
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2
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z
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1
2
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1 +

1
2
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1 αx−2z
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1
2
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1
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2
α1α
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1
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1
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2
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1
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1
2
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1
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1
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2
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1 α1
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+

1
2
[
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1

]x−z
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2
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1 α−z
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1
2
[
αx
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1
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2
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1 α−z
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1
2
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1 αx−z

1
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With results above, we can calculate various terms needed by equation (118) as follows:

−α2α1 =
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1
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For short, let use Em,n denote the n-th expression in the right-hand-side of m-th equation. We can
group the terms in the equation above as follows.
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+
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(119)
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In the derivation above, we use:

αx
1αx−z
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αx
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]x
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1
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]x−2z
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Appendix G: Derivation of partial α4

Complete expression for α4 can be found in equation (36), here only the most significant portion
of SC3 (α1, α1, α2), SC2 (α1, α3), and SC (α2, α2) are included in the derivation. These derivations
show the advantage of solving scattering equations in a general way.

The more significant portion of SC3 (α1, α1, α2) can be solved by applying A1 = α1, A2 = α2 in
equation (83).

SC3,1 (α1, α1, α2) = −1
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{
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First let’s review some results from before (in α2, only the more significant portion is included
here):
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2 = −1
2
α1α

−z
1

αz
2 = −1

2
(
3αz

1α1 + α2z
1 α−z

1

)

α2z
2 = −1

2

(
α3z

1 α−z
1 + 4α2z

1 α1 + 3 {αz
1}2

)

[α1α2]
−z = −1

2
[
α1

[
α1α

−z
1

]z]−z = −1
2
α2

1α
−z
1 +

1
2
[
αz

1α1α
−z
1

]−z = −1
4

{
α2

1α
−z
1 +
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}

With simple algebra, we can calculate various terms in SC3,1 (α1, α1, α2).
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For the conciseness of notation, let’s use Em,n to denote the n-th expression in the m-th row in the
equation above. We can group terms as follows:
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1α

z
1α
−z
1 E2,3 + E3,2 =

9
16

{
αz

1α
−z
1

}2

E7,2 =
1
16

αz
1

[
α3

1

]−z
E8,1 =

3
16

αz
1α1

[
α2

1

]−z
E8,2 =

1
16

α2z
1 α−z

1

[
α2

1

]−z

In summary, we have:

SC3,1 (α1, α1, α2) =
15
32

α4
1 +

1
16

α3z
1

{
α−z

1

}3 +
3
4
α1α

2z
1

{
α−z

1

}2 +
77
32

α2
1α

z
1α
−z
1

9
16

{
αz

1α
−z
1

}2 +
1
16

αz
1

[
α3

1

]−z +
3
16

αz
1α1

[
α2

1

]−z +
1
16

α2z
1 α−z

1

[
α2

1

]−z

− 1
16
IM1(αz

1, α2, α
z
1)−

1
8
IM1(αz

1, α1, α
z
2)

Simpler term SC2,1 (α2, α2) is calculated very concisely below (still, only the more significant portion
of α2 is considered). Substituting A = A = α2 into equation (68), omitting all terms after the first
term, we have:

SC2,1 (α2, α2) = −α2
2 + αz

2α
−z
2

2

= −1
8
α4

1 −
1
4
αz

1α
2
1α
−z
1 − 1

8
{
αz

1α
−z
1

}2 − 3
8
αz

1α
2
1α
−z
1 − 1

8
α2z

1 α1

{
α−z

1

}2 − 1
8
α4

1

= −5
8
αz

1α
2
1α
−z
1 − 1

8
{
αz

1α
−z
1

}2 − 1
8
α2z

1 α1

{
α−z

1

}2

We then calculating: SC2,1 (α1, α3) by substituting A1 = α1, A2 = α2 into equation (67), omitting
all terms other than the first term, we have:

SC2,1 (α1, α3) = −α1α3 − 1
2

{
αz

1α
−z
3 + α−z

1 αz
3

}

We then calculate various expressions needed by the equation above:
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α3 =
3
16

α3
1 +

1
8
α2z

1

{
α−z

1

}2 +
3
4
αz

1α1α
−z
1 − 1

8
αz

1

[
α2

1

]−z − 1
16
IM1(αz

1, α1, α
z
1)

αz
3 =

9
16

αz
1α

2
1 +

1
8
α2z

1

{
α−z

1

}2 +
1
4
α2z

1 α1α
−z
1 +

3
4
α2z

1 α1α
−z
1 +

3
4
{αz

1}2 α−z
1 +

3
4
αz

1α
2
1

− 1
8
α2z

1

[
α2

1

]−z − 1
8
αz

1α
2
1 −

1
16

αz
1[α

z
1α1]

−z − 1
16

αz
1[α

z
1α1]

−z +
1
16
IM1(αz

1, α
z
1, α

z
1)

=
1
8
α3z

1

{
α−z

1

}2 +
9
8
αz

1α
2
1 + α2z

1 α1α
−z
1 − 1

8
α2z

1

[
α2

1

]−z +
3
4
{αz

1}2 α−z
1

+
1
16
IM1(αz

1, α
z
1, α

z
1)

[SC2,1 (α1, α2)]
−z = −1

2
(
α1α

−z
2 + α−z

1 α2

)
=

1
4

(
2α2

1α
−z
1 + αz

1

{
α−z

1

}2
)

[SC3,1 (α1, α1, α1)]
−z = − 4

16

[
α1

[
α1α

−z
1

]−z
]z
− 1

16
∂

∂z
IM1(α1, α1, α1)

= −1
8

[
α1

{
α−z

1

}2
]z
− 1

16
α1

[
α2

1

]−z − 1
16

α1

[
α2

1

]−z +
1
16
IM1(α1, α

z
1, α1)

= −1
8
αz

1

{
α−z

1

}2 − 1
4
α2

1α
−z
1 − 1

8
α1

[
α2

1

]−z +
1
16
IM1(α1, α

z
1, α1)

α−z
3 = [SC2,1 (α1, α2)]

−z + [SC3,1 (α1, α1, α1)]
−z

= [α1+2 + α2+1]
−z + α−z

1·1·1

=
1
8
αz

1

{
α−z

1

}2 +
1
4
α2

1α
−z
1 − 1

8
α1

[
α2

1

]−z +
1
16
IM1(α1, α

z
1, α1)

SC2,1 (α1, α3) = −α1α3 − 1
2

{
αz

1α
−z
3 + α−z

1 αz
3

}

=− 3
16

α4
1 −

1
8
α2z

1 α1

{
α−z

1

}2 − 3
4
αz

1α
2
1α
−z
1 +

1
8
αz

1α1

[
α2

1

]−z +
1
16

α1IM1(αz
1, α1, α

z
1)

− 1
16

{
αz

1α
−z
1

}2 − 1
8
αz

1α
2
1α
−z
1 +

1
16

αz
1α1

[
α2

1

]−z − 1
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αz
1IM1(α1, α

z
1, α1)

− 1
16

α3z
1

{
α−z

1

}3 − 9
16

αz
1α

2
1α
−z
1 − 1

2
α2z

1 α1

{
α−z

1

}2 +
1
16

α2z
1

[
α2

1

]−z
α−z

1 − 3
8

{
αz

1α
−z
1

}2

− 1
32

α−z
1 IM1(αz

1, α
z
1, α

z
1)

=− 3
16

α4
1 −

1
16

α3z
1

{
α−z

1

}3 +
3
32

[
α2

1

]z[
α2

1

]−z − 5
8
α2z

1 α1

{
α−z

1

}2 − 23
16

αz
1α

2
1α
−z
1

− 7
16

{
αz

1α
−z
1

}2 +
1
16

α2z
1

[
α2

1

]−z
α−z

1 +
1
16

α1IM1(αz
1, α1, α

z
1)

− 1
32

αz
1IM1(α1, α

z
1, α1)− 1

32
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1 IM1(αz
1, α

z
1, α

z
1)
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In the derivation above, we use: αz
1α1

[
α2

1

]−z = 0.5
[
α2

1

]z[
α2

1

]−z. We can also summarize to have:

SC2,1 (α2, α2) + SC2,1 (α1, α3)

=− 5
16

α4
1 −

1
16

α3z
1

{
α−z

1

}3 +
3
32

[
α2

1

]z[
α2

1

]−z − 3
4
α2z

1 α1

{
α−z

1
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16

αz
1α

2
1α
−z
1

− 9
16

{
αz

1α
−z
1

}2 +
1
16

α2z
1

[
α2

1

]−z
α−z

1 +
1
16

α1IM1(αz
1, α1, α

z
1)

− 1
32

αz
1IM1(α1, α

z
1, α1)− 1

32
α−z

1 IM1(αz
1, α

z
1, α

z
1)

We summarize a step further to have:

SC3,1 (α1, α1, α2) + SC2,1 (α2, α2) + SC2,1 (α1, α3)

=
5
32

α4
1 +
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32

αz
1α

2
1α
−z
1 +

1
16

αz
1

[
α3

1

]−z +
3
16

[
α2

1

]z[
α2

1

]−z +
1
8
α2z

1 α−z
1

[
α2

1

]−z

− 1
16
IM1(αz

1, α2, α
z
1)−

1
8
IM1(αz

1, α1, α
z
2) +

1
16

α1IM1(αz
1, α1, α

z
1)

− 1
32

αz
1IM1(α1, α

z
1, α1)− 1

32
α−z

1 IM1(αz
1, α

z
1, α

z
1)
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Appendix H: Issues in the derivation of closed-forms

In the more un-collapsed notation, one piece of α can be inverted as :

S̃C (αj1 , αj2 , · · · , αjn) =
1

23n−2πn

∞∫

−∞
dk1

∞∫

−∞
dk2 · · ·

∞∫

−∞
dkn−1

×
∞∫

−∞
dz1α̃j1(0.5km − k1, z1)

∞∫

−∞
dz2α̃j2(k1 − k2, z2) · ··

×
∞∫

−∞
dznα̃jn(kn−1 + 0.5km, zn)γ̃n(km, k1, · · ·, kn−1; ε0, · · ·, εn−1)

Generally speaking, if there are n scatters in the expression of a term in the inverse scattering
series, the distribution used in the (km, z) domain is:

γ̃n(km, k1, · · ·, kn−1; ε0, · · ·, εn−1)

=−
∞∫

−∞
dkz(−i)n−1

[
k2

z + k2
m

]n−1

u1 · · · un−1
ei[ε0kz+ε1u1+···+εn−1un−1]

=−
∞∫

−∞
dkz(−i)n−1

[
k2

z + k2
m

]n−1

u1 · · · un−1
ei4ψei[ε0+ε1+···+εn−1]kz ,

(120)

where various variables are defined as follows :

ε0 = 0.5(z1 + zn)− z, εj = 0.5|zj − zj+1|
uj = sgn(kz)

√
k2

z + an aj = k2
z − 4k2

j

4ψ = ε1(u1 − kz) + · · ·+ εn−1(un−1 − kz)
(j = 1, 2, 3, · · ·, n− 1)

We can further Fourier transform it from wave-number domain to space domain:

γn (x− b0, b1, · · ·, bn−1; ε0, ε1, · · ·, εn−1)

=
1

(2π)n

∞∫

−∞
dkmeikm(x−b0)

∞∫

−∞
dk1e

ik1b1 · · ·
∞∫

−∞
dkn−1e

ikn−1bn−1 γ̃n
(121)

where several new variables are introduced :

b0 = 0.5(x1 + xn), bj = xj − xj+1 (j = 1, 2, 3, · · ·, n− 1)

If we approximate γ̃n by it’s most singular parts, that is:

γ̃n ≈ γ̃1D
n =

[
dn−1δ(u)
dun−1

]

u=ε0+ε1+···+εn
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where γ̃1D
n is the most singular part of γ̃n. Please notice that γ̃1D

n is not a function of km, k1, · · ·,
kn−1. So if we substitute in γ1D

n into equation (121), we will obtain a bunch of δ-functions,

ε = ε0 + ε1 + · · ·+ εn−1

γ̃1D
n (x− b0, b1, · · ·, bn−1; ε0, ε1, · · ·, εn−1) = (2π)nδ(n)(ε)× δ(−→x )

δ(−→x ) = δ(x− 0.5(x1 + xn))δ(x1 − x2) · · · δ(xn−1 − xn)

(122)

Let’s consider the effects of applying δ(−→x ) into integral of the form
∫∞
−∞ dx1f1(x1)

∫∞
−∞ dx2f2(x2) ·

· · ∫∞−∞ dxnfn(xn). The sifting property of δ-function will give us an extremely simply answer:
f1(x)f2(x) · · · fn(x). The multiple integral reduced to simple multiplications. This simplification
will convert the scattered information in the Fourier land into a concentrated information in the
x-domain. And in this most singular term, x and z are perfectly decoupled, so the drastic change
happened in km and x doesn’t change the operation in z at all. As a result, γ̃1D

n will produce
results identical to what had been shown in Simon’s 2002 and 2003 reports, only an extra variable
x is added.

¿From the analysis above, it’s easy to figure out the leading-order imaging subseries if only the
most singular part of the distribution is considered:

αLOIS(x, z) = α1

(
x , z − 0.5

∫ z

0
duα1(x, u)

)
(123)

Other singular terms, i.e, which are less singular than the most singular part, also display amazing
concentration in x, but they need partial derivatives of the form ∂/∂x, ∂2/∂x2, ∂2/(∂x∂z), · · ·,
which can be physically interpreted as the Taylor series expansion of α(x, z) in terms of α1(x, z),
will be included in the future work.
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Appendix I: Several Fourier integrals for the second order equation

We present here several useful integrals in α2 derivation. In this section, f and g are arbitrary
functions or distributions. f̃ and g̃ are their corresponding Fourier transform. The equation (124)
is used to transform the multi-D imaging and inversion terms in α2 from (km, z) domain to (x, z)
domain.

1
2π

∞∫

−∞
dk1

∞∫

−∞
dkmeikmxf̃(0.5km − k1)g̃(0.5km + k1)

=
1
2π

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx

∞∫

−∞
dx1f(x1)e−i(0.5km−k1)x1

∞∫

−∞
dx2g(x2)e−i(0.5km+k1)x2

=
1
2π

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2

∞∫

−∞
dkmeikm(x−0.5x1−0.5x2)

=

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2δ(x− 0.5x1 − 0.5x2)

=2

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2δ(x1 + x2 − 2x)

=2

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1g(2x− x1)e−ik1(2x−x1)

=2

∞∫

−∞
dx1f(x1)g(2x− x1)

∞∫

−∞
dk1e

−i2k1(x−x1)

=4π

∞∫

−∞
dx1f(x1)g(2x− x1)δ(2(x− x1))

=2π

∞∫

−∞
dx1f(x1)g(2x− x1)δ(x− x1) = 2πf(x)g(x)

∞∫

−∞
dk1

∞∫

−∞
dkmeikmxf̃(0.5km − k1)g̃(0.5km + k1) = 4π2f(x)g(x) (124)

The equation (125) is used to transform the the remaining singular terms in α2 from (km, z) domain
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to (x, z) domain.

1
2π

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx(k2

m − 4k2
1)f̃(0.5km − k1)g̃(0.5km + k1)

=
1
2π

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx(k2

m − 4k2
1)

∞∫

−∞
dx1f(x1)e−i(0.5km−k1)x1

∞∫

−∞
dx2g(x2)e−i(0.5km+k1)x2

=
1
2π

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2

∞∫

−∞
dkmeikm(x−0.5x1+0.5x2)(k2

m − 4k2
1)

If we define u = 0.5x1 + 0.5x2 − x, then the expression above can be expressed as:

=− 1
2π

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2(2π)

(
δ′′(u) + 4k2

1δ(u)
)

=− 8

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2

(
δ′′(2u) + k2

1δ(2u)
)

=− 8

∞∫

−∞
dx1f(x1)

∞∫

−∞
dk1e

i2k1(x1−x)
[
g′′(2x− x1) + 2ik1g

′(2x− x1))
]

=− 8

∞∫

−∞
dx1f(x1)

[
g′′(2x− x1)(2π)δ(2x− 2x1) + g′(2x− x1)(2π)× 2δ′(2x− 2x1))

]

=− 8

∞∫

−∞
dx1f(x1)

[
g′′(2x− x1)

(2π)
2

δ(x− x1) + g′(2x− x1)
(4π)

4
δ′(x− x1))

]

=− 8π

∞∫

−∞
dx1f(x1)

[
g′′(2x− x1)δ(x− x1) + g′(2x− x1)δ′(x− x1))

]

=− 8π

∞∫

−∞
dx1f(x1)g′′(2x− x1)δ(x− x1) − 8π

∞∫

−∞
dx1f(x1)g′(2x− x1)δ′(x− x1)

=− 8πf(x)g′′(x) − 8π
{
f ′(x1)g′(2x− x1)− f(x1)g′′(2x− x1)

}
x1=x

=− 8πf ′(x)g′(x)

1
2π

∞∫

−∞
dk1

∞∫

−∞
dkmeikmx(k2

m − 4k2
1)f̃(0.5km − k1)g̃(0.5km + k1) = −8π × f ′(x)g′(x) (125)

Derivation of equation (125) using different method.
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1
2π

∞∫

−∞
dk1

∞∫

−∞
dx1f(x1)eik1x1

∞∫

−∞
dx2g(x2)e−ik1x2

∞∫

−∞
dkmeikm(x−0.5x1−0.5x2)(k2

m − 4k2
1)

=
1
2π

∞∫

−∞
dx1f(x1)

∞∫

−∞
dx2g(x2)

∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x2)(k2

m − 4k2
1)

Let’s define b0 = 0.5(x1 + x2), b1 = x1− x2, we have: x1 = b0 + 0.5b1, and x2 = b0− 0.5b1. And we
calculate the 2 innermost integral in the equation above as:

∞∫

−∞
dk1e

ik1b1

∞∫

−∞
dkmeikm(x−b0)(k2

m − 4k2
1) = −(2π)

∞∫

−∞
dk1e

−ik1b1
[
δ′′(x− b0) + 4δ(x− b0)

]

= −4π2
[
δ′′(x− b0)δ(b1)− 4δ(x− b0)δ′′(b1)

]

We can equivalently express the left hand side of equation (125) as:

=− 2π

∞∫

−∞
dx1f(x1)

∞∫

−∞
dx2g(x2)

[
δ′′(x− b0)δ(b1)− 4δ(x− b0)δ′′(b1)

]

=− 2π

∞∫

−∞
db0

∞∫

−∞
db1f(b0 + 0.5b1)g(b0 − 0.5b1)

[
δ′′(x− b0)δ(b1)− 4δ(x− b0)δ′′(b1)

]

=− 2π

∞∫

−∞
db0δ

′′(x− b0)

∞∫

−∞
db1f(b0 + 0.5b1)g(b0 − 0.5b1)δ(b1)

+ 8π

∞∫

−∞
db0δ(x− b0)

∞∫

−∞
db1f(b0 + 0.5b1)g(b0 − 0.5b1)δ′′(b1)

=− 2π

∞∫

−∞
db0δ

′′(x− b0)f(b0)g(b0)

+ 8π

∞∫

−∞
db0δ(x− b0)

f ′′(b0)g(b0)− 2f ′(b0)g′(b0) + f(b0)g′′(b0)
4

=− 8π × f ′(x)g′(x).
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Appendix J: Several Fourier integrals for the third order equation

We present here several useful integrals in α3 derivation. In this section, f1, f2, and f3 are arbitrary
functions or distributions. f̃1, f̃2 and f̃3 are their corresponding Fourier transform. The equation
(126) is used to transform the multi-D imaging and inversion terms in α3 from (km, z) domain to
(x, z) domain. In this appendix, let’s define b0 = 0.5(x1 + x3), b1 = x1 − x2 and b2 = x2 − x3. We
have: x1 = b0 + 0.5b1 + 0.5b2, x2 = b0 − 0.5b1 + 0.5b2, x3 = b0 − 0.5b1 − 0.5b2.

1
2π

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)

×
∞∫

−∞
dkm [ρ1a1 + ρ2a2] eikm(x−0.5x1−0.5x3)

=
1
2π

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)δ(x1 − x2)δ(x2 − x3)δ(x− 0.5x1 − 0.5x3)

=
1
2π

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dk1e

−ik1(x1−x2)

∞∫

−∞
dk2e

−ik2(x2−x3)

×
∞∫

−∞
dkm [ρ1a1 + ρ2a2] e−ikm(x−0.5x1−0.5x3)

=
1
2π

∞∫

−∞
db0

∞∫

−∞
db1

∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)

×
∞∫

−∞
dk1e

−ik1b1

∞∫

−∞
dk2e

−ik2b2

∞∫

−∞
dkm [ρ1a1 + ρ2a2] e−ikm(x−b3)

=−
∞∫

−∞
db0

∞∫

−∞
db1

∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)

×
∞∫

−∞
dk1e

−ik1b1

∞∫

−∞
dk2e

−ik2b2
[
(ρ1 + ρ2)δ′′(x− b0) + 4(ρ1k

2
1 + ρ2k

2
2)δ(x− b0)

]

=− 2π

∞∫

−∞
db0

∞∫

−∞
db1

∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)

×
∞∫

−∞
dk1e

−ik1b1
[
(ρ1 + ρ2)δ′′(x− b0)δ(b2) + 4(ρ1k

2
1δ(x− b0)δ(b2)− ρ2δ(x− b0)δ′′(b2))

]
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=− 4π2

∞∫

−∞
db0

∞∫

−∞
db1

∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)

× [
(ρ1 + ρ2)δ′′(x− b0)δ(b1)δ(b2)− 4ρ1δ(x− b0)δ′′(b1)δ(b2)− 4ρ2δ(x− b0)δ(b1)δ′′(b2)

]

= −4π2(I1 + I2 + I3)

I1 =(ρ1 + ρ2)

∞∫

−∞
db0

∞∫

−∞
db1

∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)

× δ′′(x− b0)δ(b1)δ(b2)

=(ρ1 + ρ2)

∞∫

−∞
db0δ

′′(x− b0)

∞∫

−∞
db1δ(b1)

×
∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)δ(b2)

=(ρ1 + ρ2)

∞∫

−∞
db0δ

′′(x− b0)

∞∫

−∞
db1δ(b1)f1(b0 + 0.5b1)f2(b0 − 0.5b1)f3(b0 − 0.5b1)

=(ρ1 + ρ2)

∞∫

−∞
db0δ

′′(x− b0)f1(b0)f2(b0)f3(b0)

=(ρ1 + ρ2)
∂(f1(x)f2(x)f3(x))

∂x
=(ρ1 + ρ2)

[
f ′′1 (x)f2(x)f3(x) + f1(x)f ′′2 (x)f3(x) + f1(x)f2(x)f ′′3 (x)

]

+ 2(ρ1 + ρ2)
[
f ′1(x)f ′2(x)f3(x) + f ′1(x)f2(x)f ′3(x) + f1(x)f ′2(x)f ′3(x)

]

I2 = 4ρ1

∞∫

−∞
db1δ

′′(b1)

∞∫

−∞
db0δ(x− b0)

×
∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)δ(b2)

=4ρ1

∞∫

−∞
db1δ

′′(b1)f1(x + 0.5b1)f2(x− 0.5b1)f3(x− 0.5b1)

=ρ1

[
f ′′1 (x)f2(x)f3(x) + f1(x)f ′′2 (x)f3(x) + f1(x)f2(x)f ′′3 (x)

]

+ 2ρ1

[−f ′1(x)f ′2(x)f3(x)− f ′1(x)f2(x)f ′3(x) + f1(x)f ′2(x)f ′3(x)
]
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I3 =4ρ2

∞∫

−∞
db0δ(x− b0)

∞∫

−∞
db1δ(b1)

×
∞∫

−∞
db2f1(b0 + 0.5b1 + 0.5b2)f2(b0 − 0.5b1 + 0.5b2)f3(b0 − 0.5b1 − 0.5b2)δ′′(b2)

=4ρ2

∞∫

−∞
db2δ

′′(b2)f1(x + 0.5b2)f2(x + 0.5b2)f3(x− 0.5b2)

=ρ2

[
f ′′1 (x)f2(x)f3(x) + f1(x)f ′′2 (x)f3(x) + f1(x)f2(x)f ′′3 (x)

]

+ 2ρ2

[
f ′1(x)f ′2(x)f3(x)− f ′1(x)f2(x)f ′3(x)− f1(x)f ′2(x)f ′3(x)

]

I1 + I2 + I3 =− 4
{
ρ1f

′
1(x) [f2(x)f3(x)]′ + ρ2f

′
3(x) [f1(x)f2(x)]′

}

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dk1e

−ik1(x1−x2)

∞∫

−∞
dk2e

−ik2(x2−x3)

×
∞∫

−∞
dkm [ρ1a1 + ρ2a2] e−ikm(x−0.5x1−0.5x3)

= −32π3
{
ρ1f

′
1(x) [f2(x)f3(x)]′ + ρ2f

′
3(x) [f1(x)f2(x)]′

}

(126)

The following integrals will be used to simplify the last singular term in α3.

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m + 2k2
1 + 2k2

2

)

In the equation below, all the functions have the same argument (x), for compactness, this argument
is omitted.

· · · =1
4

(
4f ′′1 f2f3 + 4f1f

′′
2 f3 + 4f1f2f

′′
3 + 8f ′1f

′
2f3 + 8f ′1f2f

′
3 + 8f1f

′
2f
′
3

)

+
1
4

(
2f ′′1 f2f3 + 2f1f

′′
2 f3 + 2f1f2f

′′
3 − 4f ′1f

′
2f3 − 4f ′1f2f

′
3 + 4f1f

′
2f
′
3

)

+
1
4

(
2f ′′1 f2f3 + 2f1f

′′
2 f3 + 2f1f2f

′′
3 + 4f ′1f

′
2f3 − 4f ′1f2f

′
3 − 4f1f

′
2f
′
3

)

=2f ′′1 f2f3 + 2f1f
′′
2 f3 + 2f1f2f

′′
3 + 2f ′1f

′
2f3 + 2f1f

′
2f
′
3

So we have:
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∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m + 2k2
1 + 2k2

2

)

=16π2
{
f ′′1 f2f3 + f1f

′′
2 f3 + f1f2f

′′
3 + f ′1f

′
2f3 + f1f

′
2f
′
3

}

(127)

We next calculate the following integral. We give the relatively simple final answer here. We
provide the framework of proof immediately after.

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
1

)2

=128π3f ′′1 [f2f3]
′′

(128)

Here we provide the framework of the proof of the equation (128): integral above involve lots of
terms, but in the end all the terms containing derivatives higher than the second order cancel with
each other. We have a relative simple expression in the end.

=f ′′′′1 f2f3 + f1f
′′′′
2 f3 + f1f2f

′′′′
3 + 4f ′′′1 f ′2f3 + 4f ′′′1 f2f

′
3 + 4f ′1f

′′′
2 f3 + 4f ′1f2f

′′′
3 + 4f1f

′′′
2 f ′3

+ 4f1f
′
2f
′′′
3 + 6f ′′1 f ′′2 f3 + 6f ′′1 f2f

′′
3 + 6f1f

′′
2 f ′′3 + 12f ′′1 f ′2f

′
3 + 12f ′1f

′′
2 f ′3 + 12f ′1f

′
2f
′′
3

− 2f ′′′′1 f2f3 − 2f1f
′′′′
2 f3 − 2f1f2f

′′′′
3 − 4f1f

′′′
2 f ′3 − 4f1f

′
2f
′′′
3

+ 4f ′′1 f ′′2 f3 + 4f ′′1 f2f
′′
3 − 12f1f

′′
2 f ′′3 + 8f ′′1 f ′2f

′
3

+ f ′′′′1 f2f3 + f1f
′′′′
2 f3 + f1f2f

′′′′
3 − 4f ′′′1 f ′2f3 − 4f ′′′1 f2f

′
3 − 4f ′1f

′′′
2 f3 − 4f ′1f2f

′′′
3 + 4f1f

′′′
2 f ′3

+ 4f1f
′
2f
′′′
3 + 6f ′′1 f ′′2 f3 + 6f ′′1 f2f

′′
3 + 6f1f

′′
2 f ′′3 + 12f ′′1 f ′2f

′
3 − 12f ′1f

′′
2 f ′3 − 12f ′1f

′
2f
′′
3

=16f ′′1 f ′′2 f3 + 16f ′′1 f2f
′′
3 + 32f ′′1 f ′2f

′
3

=16f ′′1 (f2f3)
′′

Now let’s provide the answer for another integral. In the final answer, all functions should have
the same argument (x), which is omitted to make it compact.

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
1

) (
k2

m − 4k2
2

)

=128π3
(
f ′′1 f2f

′′
3 + f ′′1 f ′2f

′
3 + f ′1f

′′
2 f ′3 + f ′1f

′
2f
′′
3

)

(129)
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Just like the derivation process of the integral before equation (129), integrals involve high order
derivatives of δ-function will give rise to lots of terms, but higher order terms cancels with each
other, and we have a final expression relatively simple:

=
1
16

(I1 + I2 + I3 + I4) = 16
(
f ′′1 f2f

′′
3 + f ′′1 f ′2f

′
3 + f ′1f

′′
2 f ′3 + f ′1f

′
2f
′′
3

)

I1 =16f ′′′′1 f2f3 + 16f1f
′′′′
2 f3 + 16f1f2f

′′′′
3 + 64f ′′′1 f ′2f3 + 64f ′′′1 f2f

′
3 + 64f ′1f

′′′
2 f3+

64f ′1f2f
′′′
3 + 64f1f

′′′
2 f ′3 + 64f1f

′
2f
′′′
3 + 96f ′′1 f ′′2 f3 + 96f ′′1 f2f

′′
3 + 96f1f

′′
2 f ′′3 +

192f ′′1 f ′2f
′
3 + 192f ′1f

′′
2 f ′3 + 192f ′1f

′
2f
′′
3

I2 =− 16f ′′′′1 f2f3 − 16f1f
′′′′
2 f3 − 16f1f2f

′′′′
3 − 64f1f

′′′
2 f ′3−

64f1f
′
2f
′′′
3 + 32f ′′1 f ′′2 f3 + 32f ′′1 f2f

′′
3 − 96f1f

′′
2 f ′′3 + 64f ′′1 f ′2f

′
3

I3 =− 16f ′′′′1 f2f3 − 16f1f
′′′′
2 f3 − 16f1f2f

′′′′
3 − 64f ′′′1 f ′2f3 − 64f ′1f

′′′
2 f3−

96f ′′1 f ′′2 f3 + 32f ′′1 f2f
′′
3 + 32f1f

′′
2 f ′′3 + 64f ′1f

′
2f
′′
3

I4 =16f ′′′′1 f2f3 + 16f1f
′′′′
2 f3 + 16f1f2f

′′′′
3 − 64f ′′′1 f2f

′
3 − 64f ′1f2f

′′′
3 − 32f ′′1 f ′′2 f3+

96f ′′1 f2f
′′
3 − 32f1f

′′
2 f ′′3 + 64f ′1f

′′
2 f ′3

Finally comes the last equation utilized to simplify the α3 terms.

∞∫

−∞
dx1f1(x1)

∞∫

−∞
dx2f2(x2)

∞∫

−∞
dx3f3(x3)

∞∫

−∞
dkmeikm(x−0.5x1−0.5x3)

×
∞∫

−∞
dk1e

ik1(x1−x2)

∞∫

−∞
dk2e

ik2(x2−x3)
(
k2

m − 4k2
2

)2

=128π3 [f1(x)f2(x)]′′ f ′′3 (x)

(130)

The seemingly simple equation (130) resulted from the cancellation of the following lengthy terms.

=
1
16

(I1 + I2 + I3) = 16
(
f ′′1 f2f

′′
3 + f1f

′′
2 f ′′3 + f ′1f

′
2f
′′
3

)

I1 =16f ′′′′1 f2f3 + 16f1f
′′′′
2 f3 + 16f1f2f

′′′′
3 + 64f ′′′1 f ′2f3 + 64f ′′′1 f2f

′
3 + 64f ′1f

′′′
2 f3+

64f ′1f2f
′′′
3 + 64f1f

′′′
2 f ′3 + 64f1f

′
2f
′′′
3 + 96f ′′1 f ′′2 f3 + 96f ′′1 f2f

′′
3 + 96f1f

′′
2 f ′′3 +

192f ′′1 f ′2f
′
3 + 192f ′1f

′′
2 f ′3 + 192f ′1f

′
2f
′′
3

I2 =− 32f ′′′′1 f2f3 − 32f1f
′′′′
2 f3 − 32f1f2f

′′′′
3 − 128f ′′′1 f ′2f3 − 128f ′1f

′′′
2 f3−

192f ′′1 f ′′2 f3 + 64f ′′1 f2f
′′
3 + 64f1f

′′
2 f ′′3 + 128f ′1f

′
2f
′′
3

I3 =16f ′′′′1 f2f3 + 16f1f
′′′′
2 f3 + 16f1f2f

′′′′
3 + 64f ′′′1 f ′2f3 − 64f ′′′1 f2f

′
3+

64f ′1f
′′′
2 f3 − 64f ′1f2f

′′′
3 − 64f1f

′′′
2 f ′3 − 64f1f

′
2f
′′′
3 + 96f ′′1 f ′′2 f3 + 96f ′′1 f2f

′′
3 +

96f1f
′′
2 f ′′3 − 192f ′′1 f ′2f

′
3 − 192f ′1f

′′
2 f ′3 + 192f ′1f

′
2f
′′
3
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Reflector location using high-order inverse scattering series terms

Kristopher A. Innanen

Abstract

In considering the longer-term future of non-linear inverse scattering series based methods,
there arises a need to characterize and progress beyond the limitations of leading-order methods
for locating reflected primaries. To that end, a generating function that appears to adequately
capture many of the terms associated with the imaging and inversion of primaries, including
higher-order imaging terms (in contrast to the leading order terms discussed by Shaw et al.,
2003), is presented. A categorization of terms based on higher vs. lower derivative orders is
shown (as a one-dimensional version of the categorization developed in the appendices of Liu
et al., 2005), to reproduce the “imaging” vs. “inversion” categorization. A simple numeric test
is illustrated; a large contrast model is used to produce contrasting output from both leading
order and higher order algorithms.

1 Introduction

The purpose of this note is to postulate a form for a subseries that involves itself with all processing
objectives associated with the primaries of a recorded wave field; namely, imaging (or reflector
location) and inversion (or target identification). As such, I make direct comparative statements
between new mathematical inverse scattering series forms and the leading order imaging subseries
(LOIS) of Shaw et al. (2003), and the so-called coupled, or simultaneous imaging and inversion
subseries (SII) of Innanen et al. (2004). The goal is to develop methodologies that work well under
conditions of large-contrast, in which significant levels of location error are noted at leading order.

The leading order imaging subseries, and coupled imaging and inversion subseries share the same
subset of terms that locate the reflectors in depth, and as such both produce precisely the same
reflector depth approximations. We more or less accept that there exist higher order terms that
“complete the job” of reflector location, especially for models of high contrast. We see evidence of
this even in the third order primary processing terms in the ISS:

α3(z) = α
(1)
3 (z) + α

(2)
3 (z) + α

(3)
3 (z) + α

(4)
3 (z), (1)

where

α
(1)
3 (z) =

1
8
α′′1(z)

(∫ z

0
α1(z′)dz′

)2

,

α
(2)
3 (z) =

3
16

α3
1(z),

α
(3)
3 (z) =

3
4
α1(z)α′1(z)

∫ z

0
α1(z′)dz′,

α
(4)
3 (z) = −1

8
α′1(z)

∫ z

0
α2

1(z
′)dz′.

(2)
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These expressions include the term α
(4)
3 (z), which appears to be involved with higher order imaging

(see appendix A). We are curious about any simple subseries that generates this and other, higher
order terms, that do not appear in either LOIS or SII. The production and analysis of high order
inverse scattering series primary terms is the subject of this note.

1.1 High-order processing in the context of M-OSRP research

Elsewhere in this report we document the progression, towards greater complexity, of the non-linear
processing and inversion algorithms deriving from the inverse scattering series. The strategy always
involves investigation of the simplest imaginable physical framework that admits the phenomenon
under study. For instance, Liu et al. (2005) study multidimensional issues in the processing/imaging
of primaries; this is accomplished by shedding all (otherwise important) complexities, such as multi-
parameter elastic behavior, and investigating the facets of the 2D problem under the simplistic
single-parameter acoustic wave propagation model. This is for the straightforward reason that
isolating levels of added complexity has the impact of isolating behaviors of the inverse scattering
series.

In this paper I consider the addition of high-order reflector location terms to computable and closed-
form subseries; to initiate this study (visible in action in the latter examples of multi-dimensional
imaging of Liu et al., 2005), in light of the above strategies, it is only necessary to work in a 1D
single parameter acoustic framework.

2 High order coupled imaging and inversion

Consider the quantity

αHOI(z) =
∞∑

n=0

(−1/2)n

n!
dn

dzn

{
α1(z)

[ ∞∑

k=1

1
4k−1

∫ z

0
αk

1(z
′)dz′

]n}
, (3)

and its closed form companion

αHOI(z) =
∫ ∞

−∞
eikz

[∫ ∞

∞
e
−ik

[
z′+ 1

2

∫ z′
0

α1(z′′)
1− 1

4 α1(z′′)dz′′
]

α1(z′)dz′
]

dk, (4)

the latter of which is based on the summation

∞∑

k=1

1
4k−1

αk
1(z

′) = α1(z′)
∞∑

k=0

(
α1(z′)

4

)k

=
α1(z′)

1− 1
4α1(z′)

(5)

as well as the SII summation from MOSRP03. This HOI quantity can be considered analytically
using equation (3) and/or numerically using equation (4).
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3 Expansions for low n, and the partitioning of tasks via regularity

Consider expansions of the HOI structure for several values of n; moreover, consider the arrange-
ment of functions from the point of view of Liu et al. (2005) – by their regularity. The n’th term
in αHOI(z) is αHOI(n)(z), where

αHOI(n)(z) =
(−1/2)n

n!
dn

dzn

{
α1(z)

[ ∞∑

k=1

1
4k−1

∫ z

0
αk

1(z
′)dz′

]n}

= Cn
dn

dzn
M(z)L(z),

(6)

and where we have set

Cn =
(−1/2)n

n!
,

M(z) = α1(z),

L(z) =

[ ∞∑

k=1

1
4k−1

∫ z

0
αk

1(z
′)dz′

]n

.

(7)

That is, we have broken the generating function up into two bits, M(z) being More discontinuous, or
irregular, and L(z) being Less discontinuous. This is based on the idea that α1(z) has discontinuities
in it – we usually consider them to be Heaviside-like steps – and since L(z) involves the integral of
α1(z), it is by definition one order Less discontinuous1 than M . With these definitions, and using
the chain rule for the n’th derivative, equation (6) can be written

αHOI(n)(z) = Cn

(
n∑

i=0

n!
i!(n− i)!

M (n−i)L(i)

)
, (8)

where the superscript (i) is the i’th derivative with respect to z. Inspection indicates that at i = 0
we will have the most discontinuous part of the HOI subseries for that n, since it involves the
highest order derivative acting on the more discontinuous component M :

αHOI(n)(z)|i=0 = Cn

(
M (n)L(0)

)

= Cnα
(n)
1 (z)

[ ∞∑

k=1

1
4k−1

∫ z

0
αk

1(z
′)dz′

]n

αHOI(n)(z)|i=0,k=1 = Cnα
(n)
1 (z)

[∫ z

0
α1(z′)dz′

]n

,

(9)

1This assumes that the exponentiation of a discontinuous function does not alter its regularity. We make assump-
tions kind of like this all the time, e.g. H2(z − z0) = H(z − z0).
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the last result coming from the case k = 1 (at which HOI becomes the simultaneous imaging and
inversion subseries SII, and the n’th LOIS term has been generated). This indicates that picking
out the most discontinuous part of HOI at any n, i.e. i = 0, produces the terms most involved with
imaging. The complement to this idea can be tested by considering the least discontinuous part at
i = n, and for k = 1, and (for simplicity’s sake) at second order, n = 1:

αHOI(n)(z)|i=n = Cn

(
M (0)L(n)

)

= Cnα1(z)

{[ ∞∑

k=1

1
4k−1

∫ z

0
αk

1(z
′)dz′

]n}(n)

αHOI(n)(z)|i=n,k=1 = Cnα1(z)
{∫ z

0
α1(z′)dz′

}(1)

= −1
2
α2

1(z).

(10)

This suggests that the least discontinuous part of HOI picks out the terms most involved with
inversion.

Some points:

1. This consideration of regularity is how Liu et al. (2005) distinguish imaging vs. inversion
terms in the more complicated 2D arena. The idea is that the most discontinuous, or singular,
portions of the n’th term are involved with imaging, and least involved with inversion.

2. For any n (and fixed k = 1, there is the LOIS (Shaw et al., 2003) term at the most singular
point, and the inversion term at the least singular point, but also a range of intermediate
terms.

3. Choosing fixed k = 1 reduces the problem to that of SII (Innanen et al., 2004) and/or LOIS,
so we must look to k > 1 for contributions to higher order imaging, if they are there.

4. Since SII contains all i = 1, n but was fixed at k = 1, and it is known to produce mixed task
terms (i.e., imaging and inversion), but no higher order imaging, perhaps the indices i and k
can distinguish between the meaning of intermediate terms, i.e. whether they correspond to
mixed tasks, or to truly higher order processing.

Expansion for n = [1, 2], k = [1, 2]

Some of these issues can be addressed by expanding for more values of k in equation (6), that is,
using n rather than i as an index. Consider substituting the full expressions for M and L into
the n = 1, n = 2 terms, and using k = [0, 1, 2] contributions. Within αHOI(n)(z)|n=1,k=[1,2] +
αHOI(n)(z)|n=2,k=[0,1] are terms that are 2nd, 3rd, and higher order. Grouping the 2nd order terms
produces

α2nd
HOI(z) =− 1

2
α′1(z)

(∫ z

0
α1(z′)dz′

)
− 1

2
α2

1(z). (11)
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Further, grouping the 3rd order terms, we have

α3rd
HOI(z) =

1
8
α′′1(z)

(∫ z

0
α1(z′)dz′

)2

+
3
4
α′1(z)α1(z)

∫ z

0
α1(z′)dz′

+
1
8
α3

1(z)− 1
8
α′1(z)

(∫ z

0
α2

1(z
′)dz′

)
.

(12)

This is a fairly satisfactory reproduction of the terms derived directly from the ISS equations; note,
however, that this remains an approximation of the inversion subseries – the inversion term has a
coefficient of 1/8 rather than 3/16.

4 Numeric example

As with closed-form SII, it is difficult to show analytically how it works (in contrast to LOIS).
So a numeric example is used in this section to provide evidence that αHOI(z) is a higher-order
expression that couples imaging and inversion.

Figure 1 illustrates the difference between SII and HOI for a high-contrast example. There is a
slight offset yet between amplitudes of α and αHOI , but the approximation error of the reflector
depth is clearly greatly reduced.
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Appendix A

In this appendix I put forth some circumstantial arguments as to the “higher-order imaging” nature
of one of the third-order terms of the inverse scattering series (for normal incidence problems in a
1D single parameter acoustic medium), namely:
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Figure 1: Large contrast example illustrates the difference between SII and HOI. Top: true α(z) (solid) vs. α1(z)

(dashed). Middle: αSII (blue) overlain on linear and true perturbations. Bottom: αHOI (red) overlain on linear and

true perturbations. The main difference is in increased reflector depth accuracy.

α
(4)
3 (z) = −1

8
α′1(z)

∫ z

0
α2

1(z
′)dz′. (13)

Substituting

α2
1(z) = α1(z)α1(z)

= α1(z)
d

dz

(∫ z

0
α1(z′)dz′

)

=
d

dz

(
α1(z)

∫ z

0
α1(z′)dz′

)
− α′1(z)

∫ z

0
α1(z′)dz′

(14)

into equation (13) produces
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α
(4)
3 (z) =− 1

8
α′1(z)α1(z)

∫ z

0
α1(z′)dz′

+
1
4
α′1(z)

∫ z

0

[
−1

2
α′1(z

′)
∫ z′

0
α1(z′′)dz′′

]
dz′.

(15)

This term, therefore, may be split into two parts. The first, of the form α′1α1

∫ z
0 α1, alters the

coefficient of one of the other third-order terms (α(3)
3 in equation 1). The second operates in an

interesting way: it is a second-order imaging operator,

α′1(z
′)

∫ z′

0
F (z′′)dz′′,

acting on a second-order imaging quantity:

F (z) = −1
2
α′1(z)

∫ z

0
α1(z′)dz′,

to form an overall third-order quantity. This is qualitatively suggestive that a higher-order reflector
locator, or “mover”, constitutes part of this term.
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On acoustic reciprocity theorems and the construction of
transmission response from reflection data

Bogdan G. Nita and Arthur B. Weglein

Abstract

Seismic exploration methods rely mainly on reflection data to determine the structure and
characteristics of the subsurface. However, procedures exist to perform imaging and inversion
using either entirely transmission data, i.e. VSP, or a combination of transmition and reflection
data. In addition, newly developed inverse scattering methods for imaging without an ade-
quate velocity model suggest that transmission data is required for developing a model type
independent algorithm (see Weglein et al. (28)). Recently, there has been an increasing inter-
est in procedures for constructing the transmitted wavefield (as opposed to measuring it) from
recorded reflection data. In this paper we review the method of determining the amplitude
and the phase of the transmission response from recorded seismic data based on reciprocity
theorems.

1 Introduction

Inverse scattering series is presently the only direct non-linear inversion method which is capable
of performing full inversion without adequate information about the unknown medium. Task
specific methods for free-surface multiple elimination and internal multiple attenuation extracted
from the full inverse scattering series have shown tremendeous capability and practical value (27).
In addition, the two algorithms are model type independent, i.e. they perform with the same
efficiency independent on the earth’s model type, e.g. acoustic, elastic, inelastic, etc. Recently,
a task specific subseries aimed at performing imaging, i.e. locating reflectors in space, has been
identified and tested on analytical data for simple 1D-earth examples with encouraging results (see
Shaw and Weglein (19) and Shaw et al. (20). Liu et al. (12) has very recently shown the first
multidimensional acoustic examples of these methods for determining the horizontal and the vertical
reflector location without knowing or determining the overburden velocity model. Weglein et al.
(26) analyzed the possibility and requirements for a model type independent imaging algorithm.
As some of the diagrams included in Shaw et al. (20), describing scattering interaction within the
imaging subseries, imply that a model type independent algorithm would require both reflection
and transmission data.

Most of the seismic exploration techniques involve collection and interpretation of reflection data
to determine the earth structure and properties. However there are a few procedures which in-
volve collecting and interpreting borehole VSP transmission data, independently or in addition
to reflection data. In recent years, a promising method, based on reciprocity theorems, has been
developed to construct the transmission response (rather than measure it) from recorded reflection
data. Among the advantages we mention the relatively reduced cost of computing rather than col-
lecting the data, and the resulting transmission data having similar characteristics (wavelet, with
or without free surface multiples, no ghosts etc) with the input reflection data.
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In this paper we present the method of constructing the transmission response from recorded
reflection data based on acoustic reciprocity theorems. The paper is organized as follows. The first
section discusses the decomposition of the two-way wavefields into pressure normalized and flux
normalized one-way wavefields and their satisfying of the reciprocity principle. The second section
presents the reciprocity theorems of convolution and correlation type for both two-way and one-
way acoustic wavefields and focus our attention on the relationship between the reflection and the
transmission responses in an acustic experiment with no free surface which allows the construction
of the amplitude of the transmitted wavefield from reflection data. Section 4 then analyzes the
construction of the phase properties from amplitude information for real minimum phase signals.
Section 5 further investigates the properties of minimum phase wavefields and reflection coefficients
and presents both time and frequency domains interpretations. Some conclusions are drawn in the
last section. Finally we mention that, while we discuss mainly the acoustic case, the methods
presented can be extended to the elastic case.

2 Pressure normalized and flux normalized one-way wavefields

Acoustic reciprocity is a fundamental property of the acoustic wave equation for the total wavefield
which, in its most elementary form, states that the acoustic response does not change if the source
and receiver are interchanged (17). Applications to seismic exploration were discussed, among
others, by Fokkema and van den Berg (5). In many situations, e.g. migration/inversion, it is useful
to decompose the total wavefield into up-going and down-going wavefields. This decomposition
is not unique and the resulting one way propagators are no longer solutions to the acoustic wave
equation and, hence, it is not obvious that they obey the reciprocity principle. In fact, whether or
not the one-way Green’s functions satisfy the acoustic reciprocity, depends on how the wavefield
decomposition is performed. Two types of decompositions are used for different purposes in seismic
applications, namely pressure normalized and flux normalized decompositions, with only the latter
resulting in reciprocal up-going and down-going fields.

Flux normalized decompositions have been found for wavefields propagating through any inhomo-
geneous media (7), (8) and general reciprocity theorems for flux normalized one-way wavefields and
propagators in arbitrarily inhomogeneous media have been derived (22). In this section, following
Wapenaar (23), we present the pressure normalized and flux normalized decompositions and show
that the amplitudes of the transmitted up-going and down-going wavefields through a horizontal
interface in a simple 1.5D model, are different in the former and equal in the latter. This is an
indication of the reciprocity principle being satisfied only by the flux normalized decomposition.
We also note that neither of the two decompositions require information about the medium that
the wavefield propagates through, but only about the medium where the wavefield is recorded in a
particular seismic experiment.

In the space-frequency domain the pressure normalized down-going and up-going wavefields, P+

and P−can be written
(

P+

P−

)
=

1
2


 1

(
Ĥ−1

1 ωρ ·
)

1 −
(
Ĥ−1

1 ωρ ·
)




(
P
Vz

)
, (1)

where P and Vz are the acoustic pressure and the vertical component of particle velocity respectively,
ω is the frequency, ρ the mass density and Ĥ1 is the square root operator for the pseudo-Helmholtz
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operator Ĥ2, i.e. Ĥ1Ĥ1 = Ĥ2, with

Ĥ2 =
(ω

c

)2
+ ρ

∂

∂x

(
1
ρ

∂

∂x
·
)

+ ρ
∂

∂y

(
1
ρ

∂

∂y
·
)

. (2)

For 1D media this relation can be written in the wavenumber-frequency domain as
(

P+

P−

)
=

1
2

(
1 ωρ/kz

1 −ωρ/kz

)(
P
Vz

)
, (3)

where kz denotes the vertical wavenumber. Assuming the medium has an interface between two
homogeneous half spaces, denoted below by 1 and 2, one can calculate the reflection and the
transmission coefficients using continuity of P and Vz at that interface and find

R =
ρ2/kz,2 − ρ1/kz,1

ρ2/kz,2 + ρ1/kz,1
(4)

and
T+ = 1 + R, T+ = 1−R. (5)

Notice that the up-going and down-going transmission coefficients are not equal and satisfy

T+ =
kz,1

kz,2

ρ2

ρ1
T− (6)

which shows that the reciprocity principle is not satisfied by the one-way wavefields obtained
through this method.

The flux-normalized down-going and up-going wavefields, also denoted by P+ and P−, can be
obtained as (

P+

P−

)
=

1√
2

(
Ĥ

1
2
1 (ωρ)−

1
2 Ĥ−

1
2

1 (ωρ)
1
2

Ĥ
1
2
1 (ωρ)−

1
2 −Ĥ−

1
2

1 (ωρ)
1
2

)(
P
Vz

)
(7)

where the pseudo-Helmholtz operator Ĥ2 was redefined as

Ĥ2 = ρ−
1
2

(
Ĥ2ρ

1
2 ·

)
(8)

and the square root operator is defined in terms of Ĥ2 to satisfy Ĥ1Ĥ1 = Ĥ2. Note that Ĥ2 can
be written as

Ĥ2 =
(ω

c′
)2

+
∂2

∂x2
+

∂2

∂y2
(9)

with

(ω

c′
)2

=
(ω

c

)2
−

3

((
∂ρ

∂x

)2

+
(

∂ρ

∂y

)2
)

4ρ2
+

∂2ρ

∂2x
+

∂2ρ

∂2y

2ρ
. (10)

For a 1D media this relation can be written in the wavenumber-frequency domain as

(
P+

P−

)
=

1√
2




√
kz

ωρ

√
ωρ

kz√
kz

ωρ
−

√
ωρ

kz




(
P
Vz

)
. (11)
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As before, the reflection and transmission coefficients can be calculated to find

R =
ρ2/kz,2 − ρ1/kz,1

ρ2/kz,2 + ρ1/kz,1
(12)

and
T+ = T− =

√
1−R2 (13)

which is an indication that, in this decomposition, the reciprocity principle is satisfied.

Notice that both pressure normalized and flux-normalized decomposition procedures/operators, in
expressions (1) and (7), require information only about the medium where data (P and Vz on a
measurement surface) is recorded.

3 Reciprocity theorems

The initial method for deriving symmetry relations for reflection and transmission responses was
to find ’propagation invariants’ for the 3D inhomogeneous acoustic and elastic media, see e.g. (6),
(9), (21). For acoustic media such an invariant is given, in the space-frequency domain, by

∫

z=const.

d2x {PAVz,B − Vz,APB} (14)

where the integral is performed over an arbitrary horizontal surface defined by z = const., P and
Vz are, as before, the acoustic pressure and vertical component of particle velocity respectively, and
A and B represent two independent acoustic states. The notion of invariant refers to the fact that
this quantity remains the same at any depth as long as the medium between the two depths does
not contain any sources, i.e.

∫

zM=const.

d2x {PAVz,B − Vz,APB} =
∫

zm=const.

d2x {PAVz,B − Vz,APB} (15)

for any source-free region between depths zM and zm.

In addition to expression (15), which represents a special case of reciprocity theorems of the
convolution-type, we can also have reciprocity theorems of the correlation-type (see e.g. (2), (5))
from which we find similarly

∫

zM=const.

d2x
{
P ∗

AVz,B + V ∗
z,APB

}
=

∫

zm=const.

d2x
{
P ∗

AVz,B + V ∗
z,APB

}
(16)

where ∗ denotes complex conjugation. Unlike equation (15) which is valid for both lossless and
dissipative media, equation (16) is only valid for lossless media (see e.g. (25)).

Notice that both relations (15) and (16) are written for the full two-way wavefields. However, to
relate reflection and transmission responses in a seismic experiment, similar equations are needed for
one-way wavefields. Reciprocity theorems for one-way wavefields have been derived by Wapenaar
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− ε

Figure 1: The choice of acoustic states in an experiment without free surface and corresponding up-going and
down-going wavefields

and Grimbergen (22). They can also be divided into reciprocity theorems of the convolution type,
for which we can write analogous to equation (15)

∫

zM=const.

d2x
{
P+

A P−
B − P−

A P+
B

}
=

∫

zm=const.

d2x
{
P+

A P−
B − P−

A P+
B

}
(17)

and reciprocity theorems of the correlation type, analogous to equation (16),
∫

zM=const.

d2x
{
(P+

A )∗P+
B − (P−

A )∗P−
B

}
=

∫

zm=const.

d2x
{
(P+

A )∗P+
B − (P−

A )∗P−
B

}
(18)

where P+ and P− are flux normalized down-going and up-going wavefields respectively. Equation
(17) holds for primary and multiply reflected waves, including evanescent modes, in 3D lossless
or dissipative inhomogeneous media. Equation (18) is less general and it can be viewed as an
approximation since it assumes that the medium is lossless and that evanescent wavemodes can be
neglected.

The two states A and B can be chosen in different ways for deriving relations between reflection and
transmission responses (for a comprehensive description see (25)). In this paper we will concentrate
specifically on the case that leads to the reconstruction of the transmission response from reflection
data. For this purpose we choose both states A and B to represent experiments with the source
located at depth zm− ε in a homogeneous half space (see Figure 1). The space coordinates of these
sources are denoted by xA and xB. The inhomogeneity V (x, y, z) is located between depths zm

and zM and the space beyond zM + ε is again a homogeneous space. A receiver located at the
same depth as the source with coordinates x would record the reflection response R(x,xA, ω) while
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a receiver located deeper than zM would record the transmition response T (x,xA, ω). To obtain
a relationship between the reflection and transmission responses R and T we are going to use the
one-way reciprocity theorem of the correlation type, equation (17). For that we notice that, with
the states A and B defined as above, we have the following. At depth zm

P+
A,B(x,xA,B, ω) = δ(x− xA,B)δ(y − yA,B)sA,B(ω) (19)

P−
A,B(x,xA,B, ω) = R(x,xA,B, ω)sA,B(ω) (20)

where s represents the source signature. At depth zM

P+
A,B(x,xA,B, ω) = T (x,xA,B, ω)sA,B(ω) (21)

P−
A,B(x,xA,B, ω) = 0. (22)

Substituting these into equation (17) and dividing by s∗A(ω)sB(ω) we find
∫

zM

d2x T ∗(x,xA, ω)T (x,xB, ω) +
∫

zm

d2x R∗(x,xA, ω)R(x,xB, ω) = δ(xB − xA). (23)

This relation provides amplitude information about the transmitted data from recorded reflection
data and viceversa. However all the phase information is lost in this process and there is no unique
way to recover it from this relation alone. Reconstructing the phase from the amplitude for a signal
would require additional information which is sometimes provided by the minimum phase condition
which will be discussed in the following sections. This property of the recorded wavefield depends
on the medium that the wave propagates through and, in general, it is not satisfied. In other words,
even when the source wavelet used in a seismic experiment is minimum phase, the interaction with
complex subsurface structures changes the phase properties of the wavefield resulting in a non-
minimum phase signal to be recorded on the measurement surface. Bostock (3) points out some of
the cases in which the wavefield preserves the minimum phase namely for pre-critical intramodal
free surface reverberations and transmitted P-waves in weak to moderate contrast stratification
with small horizontal wavenumbers. However, for general acoustic and elastic media and wavefield
propagation with arbitrary horizontal wavenumber, the recorded signal will have a mixed phase
character.

For 1D media Wapenaar et al. (24) describes the procedure of reconstructing the transmission
response from reflection data. The reconstruction implicitly uses the fact that the transmission
response for a 1D acoustic media is minimum phase and hence its full phase can be reconstructed.
In the following sections, we will discuss the definition and some of the properties of minimum
phase property and show how the reconstruction of the phase from amplitude information only is
possible for this type of signals.

4 Reconstructing the phase properties from amplitude informa-
tion for real signals

In this section we present the mathematical description of causal and minimum phase signals and
their equivalent representations in the frequency domain. We will denote by f(t) an arbitrary time
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domain function and by F (ω) its Fourier transform representation. The two functions f and F are
related by

F (ω) =

∞∫

−∞
eiωtf(t)dt, (24)

and

f(t) =
1
2π

∞∫

−∞
e−iωtF (ω)dω. (25)

A sufficient condition for the Fourier transform of f(t) to exist and satisfy equation (25) is for f(t)
to be absolutely integrable, i.e.

∞∫

−∞
|f(t)|dt < ∞. (26)

In this section we will assume that this relation holds for the function f . Its Fourier transform,
F (ω), is usually a complex function

F (ω) = X(ω) + iY (ω), (27)

with X and Y real functions which generally are independent of one another. However there are
special cases in which the two functions are related and these relations imply specific restrictions
on the original function f(t).

The function f(t) is called causal if f(t) = 0 for t < 0. This is a time-domain property which
is equivalent to saying that the Fourier transform F contains no poles in the upper half complex
ω-plane (see e.g. (16)) and hence it is analytic in that domain. A little more subtle equivalent
condition is that the real and imaginary parts of F (ω) are related through the Hilbert transform
(these relations are sometimes called Kramers-Kronig causality conditions see e.g. (10))

X(ω) = − 1
π

∞∫

−∞

Y (y)
ω − y

dy (28)

Y (ω) =
1
π

∞∫

−∞

X(x)
ω − x

dx. (29)

The conclusion is that a causal signal can be fully constructed from the real or the imaginary parts
of its Fourier transform only.

Next we want to study the reconstruction of the phase of the signal (and hence the reconstruction
of the full signal) from its measured amplitude. Notice that we can write the function F (ω) as

F (ω) = R(ω)eiφ(ω) (30)

where R(ω) =
√

X2(ω) + Y 2(ω) and φ(ω) = arctan
[

Y (ω)
X(ω)

]
. When F (ω) does not contain any

zeros in the upper half complex ω-plane we can rewrite (see e.g. (16))

F (ω) = eρ(ω)+iφ(ω) (31)
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where R(ω) = eρ(ω) or ρ(ω) = ln[R(ω)] After applying natural logarithm, ln, on both sides of the
equation, we find

ln [F (ω)] = ρ(ω) + iφ(ω). (32)

The conditions that F is analytic and that it does not contain any zeros in the upper half plane,
ensure that ln [F (ω)] is analytic in the upper half plane and hence ρ(ω) and φ(ω) are related through
the Hilbert transform relations (28) and (29). In other words, when both conditions are satisfied,
i.e. F has no poles and no zeros in the upper half plane, the phase φ(ω) can be constructed from the
amplitude R(ω). The second condition is called the minimum phase-shift or simply the minimum
phase condition.

5 Minimum phase in time and frequency domains

In this section we go over the descriptions of minimum phase signals in both time and frequency
domains and their different interpretations.

We saw in the previous section that the signal F (ω) is called minimum phase if it does not contain
any zeros in the upper half of the complex frequency plane (see also (16)). This condition insures
that the inverse of F , F−1(ω), does not have any poles in the same upper half complex frequency
plane and hence its inverse Fourier transform is a causal signal itself. Any zero in the upper half
complex frequency plane creates phase shifts in the time domain function when the frequency is
varied from −∞ to +∞, as it is, for example, when performing an inverse Fourier transform. In
particular, it was shown by Lyon (13) that passing beneath a zero of F located in the upper half
complex frequency plane creates a phase shift of (−π). One can also show, see e.g. (11), that as the
frequency is varied from +∞ to 0, a non-minimum phase function experiences a greater positive
phase shift than a minimum phase function with the same magnitude.

Time domain descriptions of minimum phase signals are also useful and have been obtained by
Eisner (4). The description involves the output energy of the system defined as

Ef =

T∫

−∞
|f(t)|2dt. (33)

If we define h(t) to be f(t) convolved with an all-pass and causal function p(t), i.e. h(t) = f(t)∗p(t),
then one can show that

Ef > Eh (34)

or, in other words, any multiplication by a causal all-pass function has the effect of decreasing the
energy that has arrived up to time T . The implications are that the response energy of a minimum
phase signal integrated up to time T is greater than that of a non-minimum phase signal with
the same frequency domain magnitude. In other words, a minimum phase signal has more energy
concentrated at early times than any other signal sharing its spectrum (see also (18)).

Minimum phase condition for the normal incidence reflection coefficient of an object immersed in
a homogeneous medium has been studied by McDaniel (14), (15). He shows, based on the time
domain interpretation of the minimum phase condition given above, that such an object would
have the property of reflecting the acoustic energy faster than an object with the same magnitude
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of reflection coefficient but with a non-minimum phase property. Furthermore, a minimum phase
medium would be one in which the perfect velocity transfer condition would hold, i.e. the wave
that enters the medium and the one that exists the medium would have the same propagation
speed. For the seismic case this is true for any intramodal PP and SS normal incidence reflections.
More general situations, i.e. angle dependent reflection/transmission coefficients and reflection
coefficients of converted waves, are presently under investigation.

6 Conclusions

In this paper we have discussed a method of constructing the transmission response of a 3D acoustic
medium from recorded reflection data. We have shown that, after the free surface effects (ghosts and
multiples) have been removed the reciprocity theorem of the correlation type relates the amplitude
of the reflection data with the amplitude of the transmission response. The phase however is not
uniquely recoverable from this relation and additional information is required to construct it. This
information is sometimes provided by the minimum phase condition which has also been described
from different points of view and in both time and frequency domain. Some open questions remain,
for example what is the connection between non-minimum phase reflection data and the constructed
minimum phase transmission data and can these two types of data can be used together in an
imaging algorithm; or, in the case the reflection data is transformed to minimum phase before using
reciprocity, how much of imaging can be achieved with this transformed data. These question and
others will be further investigated in future research.
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Non-linear construction of a Q-compensation operator directly from measured
reflection data

Kristopher A. Innanen and Arthur B. Weglein

Abstract

We continue to pursue a resolution to the conjecture of Innanen and Weglein (2003), that
the mechanisms embodied in the erstwhile imaging or reflector location subseries, will act on a
suitably determined attenuated linear inverse to perform Q-compensation without ever knowing
or determining Q. In this paper we demonstrate the conceptual and (albeit simplistic) practical
viability of this idea. This is accomplished through (1) the computation (from only the data
and a homogeneous, non-attenuating Green’s function) of a linear inverse that is complex, by
virtue of viscous impedance contrasts; and (2) substitution of this linear inverse into a subseries
postulated to be for the construction of a Q-compensation operator. A final integral, bringing
this expression into the physical domain, is approximated. The results indicate a definitive
correction of the smoothing effects of the unknown attenuation factors in the medium. We
comment on the direction of future research.

1 Introduction

Innanen and Weglein (2003) have remarked that the form of the forward scattering series, given an
acoustic reference medium and an absorptive-dispersive actual medium, indicates that a subseries
of the inverse scattering series might be found that would work to compensate for all propagation
effects, including absorption and dispersion compensation. This postulated subseries would share
many mathematical qualities with the imaging subseries of Shaw (2005), amongst which are (1)
actively engaging the data non-linearly, such that (2) no accurate (or existing) prior estimate of
medium parameters are required. In other words, non-linear Q-compensation directly in terms of
measured reflection data, without prior knowledge of Q.

Instances of successful application of the inverse scattering series (Weglein et al., 2003) have relied
heavily on the linear inverse as input to higher order terms. In light of this, Innanen and Weglein
(2004) describe the linearized inversion of the absorptive/dispersive case, finding in particular that
the problem may be cast to extract the linear acoustic-absorptive-dispersive model if the associated
complex/frequency dependent reflectivity was detectable in the data record. The nature of the non-
linear operations for Q-compensation, and the computation of the linear input to these operations
having been explored to a degree, we next consider what amounts to the non-linear construction
of a Q-compensation operator, given an acoustic, non-attenuating homogeneous reference medium
and reflected wave field data.

In this paper we demonstrate the conceptual and numerical viability of such a construction. We
discuss (1) the computation (from only the data and a homogeneous, non-attenuating Green’s
function) of a linear inverse that is complex, by virtue of viscous impedance contrasts; and (2)
substitution of this linear inverse into a subseries postulated to be for the construction of a Q-
compensation operator. We review the inverse scattering subseries identified as being involved
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with the correction of propagation-based, or, glibly, durational, effects in a measured wave field; we
furthermore review the mathematical traits of an operator that has the numerical wherewithal to
accomplish the un-smoothing required for Q-compensation. A simple 1D normal-incidence seismic
reflection experiment is used to demonstrate how data, attenuated and altered in phase and am-
plitude by complex impedance contrasts, may effect to non-linearly interact with itself to produce
just such an operator. Several numerical examples involving a layered attenuating medium are
illustrated; clear evidence of compensation is visible, as is marked effects of the “leading-order”
nature of this non-linear procedure.

1.1 Q issues in the context of M-OSRP research

The research described in this paper continues in the strategic vein at M-OSRP of isolating issues
of added complexity. In other words, if Q (in this case) is the only parameter of consequence in the
chosen model, then all of the complexity arising in the non-linear machinations of the forward and
inverse scattering series that follow are immediately identifiable as being due to, or being required
because of, Q.

In this year’s annual report we see a variety of enhancements to the complexity of the model in
our developing non-linear methods: moving a one parameter acoustic imaging algorithm from 1D
to 2D (Liu et al., 2004) but not adding parameters; moving a target identification algorithm from
one acoustic to two acoustic and three elastic parameters, but not adding dimensions (Zhang and
Weglein, 2005). A real world application will be a combination of all these generalizations, and a
synthesis of this research will accommodate them, once the items to be synthesized are understood
in isolation. It is important to view each element of this research effort both on its own and in light
of its sister projects.

The development of this paper envisions a “data-in, data-out” type of final algorithm. The theory,
as with all current descriptions of primary-processing algorithms within the scope of the inverse
scattering series, most often involves the linear inverse, presently, in this paper, designated β1(z)
and considered in the pseudo-depth domain. The linear inverse is directly computed from the “input
data”, and the “output data” is computed directly from the result of the non-linear operations upon
β1(z), namely βLOQC(z). Schematically, we will consider

Din(ω) → β1(z) linear,
β1(z) → βLOQC(z) non-linear,
βLOQC(z) → Dout(ω) linear.

(1)

2 Review

The postulate of Innanen and Weglein (2003) is that the inverse scattering series mechanisms so
far used as a means to locate reflectors in depth, from data amplitudes and a simple homogeneous
reference medium only, are doing this task, and only this task, because in the problems chosen,
misplacement of reflectors is the only durational “effect of propagation” to be corrected for. If we
are faced with a further effect, like attenuation, then similar subseries forms, similar mechanisms,
will be by assumption involved with its correction.
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Portions of the inverse scattering series that concern themselves with the processing and inversion
of reflected primaries have been identified (Weglein et al., 2003) by generating the inverse scattering
series entire, in which into the Born series representation of a scattered wave field ψs (in terms of
a Green’s operator G0 and scattering operator V)

ψs = G0VG0 + G0VG0VG0 + ..., (2)

is substituted a series representation of V in increasing orders in the measured scattered field. This
leads to a prescription for the order-by-order solution for V. In a 1D constant density acoustic
medium, V may be replaced by a wavespeed perturbation α(z) = 1 − c2

0/c2(z), and solved for as
α = α1 + α2 + α3 + .... Task-specific analysis and algorithm development then involves separating
this series into components that are deemed to be significant in the context of seismic processing
objectives. We next review one of these components.

2.1 Direct non-linear imaging

First we review the leading order imaging subseries of Shaw (2005). With the linear inverse α1(z)
having been computed directly in terms of the data amplitudes as described in the above reference,
we compute an imaged output αLI(z) whose discontinuities are correctly re-located in depth with
no change in amplitude (i.e., no beyond-linear parameter estimation) from input to output.

αLI(z) =
∞∑

n=0

(−1/2)n

n!
α

(n)
1 (z)

[∫ z

0
α1(z′)dz′

]n

=
∫ ∞

−∞
eikz

∞∑

n=0

1
n!

(
ik

2

∫ z

0
α1(z′)dz′

)n

α1(k)dk

=
∫ ∞

−∞
eik[z− 1

2

∫ z
0 α1(z′)dz′]α1(k)dk

= α1

(
z − 1

2

∫ z

0
α1(z′)dz′

)
.

(3)

Should α1 be complex instead of fully real, the last step is brought into question because a complex
α1 affects the convergence of the integral. We avoid this in what follows by working always with
the second-to-last expression above, namely:

αLI(z) =
∫ ∞

−∞
eik[z− 1

2

∫ z
0 α1(z′)dz′]α1(k)dk, (4)

and working to form numerically stable approximations of the integrand.

2.2 Ill-conditioned “un-smoothing” problems

We next consider ill-conditioned deconvolution, which is a class of problems that includes Q-
compensation with known Q (e.g., Song and Innanen, 2002). It will be useful to be able to recognize
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the mathematical traits of such a problem in this note. Consider first a general forward convolution
problem of the form:

d∆T (z) = M∆T (z) ∗ d0(z) =
∫ ∞

−∞
M∆T (z − z′)d0(z′)dz′, (5)

where d∆T is the distribution in z of a variable parameterized by ∆T (e.g., the spatial distribution
of temperature in a rod after time ∆T ); d0 is an input variable (e.g., the spatial distribution of
temperature in the rod at time zero), and M∆T relates the two. Let us consider an integrable
kernel, that obeys ∫ ∞

−∞
|M∆T (k)|2dk < ∞, (6)

in the domain conjugate to z; to satisfy this M(k) must not increase as k →∞. In a problem with
a diffusive component, like heat flow, continuation of potential fields, and absorptive-dispersive
propagation, these kernels in fact decay, often rapidly. The inverse problem, in which we decon-
volve this function, assuming we know it, from d∆T (e.g., to reconstruct the original temperature
distribution in the rod), is then expressible as:

d0(z) = M−1
∆T (z) ∗ d∆T (z) =

1
2π

∫ ∞

−∞
eikz d∆T (k)

M∆T (k)
dk, (7)

since a convolution problem is inverted by spectral division in the conjugate (k) domain. The
reciprocal of a function that we have determined to be decaying with k will obviously be increasing
with k. The wavenumber components of the operator 1/M∆T (k), i.e. its singular values, increase
with increasing wavenumber. This is characteristic of problems involving the removal of smoothing
effects – large wavenumbers have been preferentially suppressed, so to recover the original signal
they must be preferentially magnified. The condition number, or ratio of largest to smallest singular
values of such an operator is generally very large, leading to the categorization of 1/M∆T (k) as
ill-conditioned. All instances of absorption-compensation fall into this category: the well-known
sensitivity to incoherent noise of the method is due to this characteristic. Seeing a form like that of
equation (7) appear in our analysis of a potential Q compensation via the inverse scattering series
(ISS) would be encouraging and permit comparative statements to be made.

2.3 Complex data and complex linear perturbations

We consider seismic data that has arisen due to interactions of an incident field with complex
impedance contrasts. For this note, consider reference and non-reference dispersion relations

k =
ω

c0
, Kn =

ω

c0

(
1 +

i

2Qn

)
, (8)

that is a 1D normal incidence experimental framework, where deviations from reference involve
contrasts in Q only, and in which the Q model chosen is a simple friction model (e.g., Aki and
Richards, 2002) involving no dispersion. In this case the requisite perturbation operator V =
k2−K2 will contain variations in a single parameter, and have both real and imaginary components.
We consider the perturbation

k2β(z) = 1− K2(z)
k2

= k2

(
i

2Q(z)
− 1

4Q2(z)

)
. (9)
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Reflection coefficients Rn = (Kn−1 −Kn)/(Kn−1 + Kn) resulting from interactions with contrasts
in this medium are complex, and the associated data are imprinted in its phase and amplitude by
these impedance contrasts. We, for the time being, make the assumption that (whatever model one
has chosen) the phase/amplitude imprinting of Rn within the data record is sufficient to reconstruct
the “complex data” that Rn ∈ C implies.

The mathematics of the linear absorptive/dispersive inverse relationship reveals that in the presence
of complex data D, the complexity is directly transferred to estimated parameter distribution.
Solving the single parameter 1D normal incidence linear inverse problem (with a causal 1D acoustic
constant density Green’s function G0 characterized by wavespeed c0, a plane incident wave ψ0, and
scattered wave field data D), given by

D(zg|zs;ω) =
∫ ∞

−∞
G0(zg|z′; ω)k2β1(z′)ψ0(z′|zs; ω)dz′, (10)

for the linear component of a perturbation in Q only (i.e. in which the medium has wavespeed c0

everywhere), we have

β1(z) = 4
∫ z

0
D(z′)dz′, β1, D ∈ C. (11)

The linear inverse β1(z) will act as input to the Q-compensation mechanisms of the inverse scat-
tering series.

3 Leading order Q-compensation

The similarity of the mathematics of the inverse scattering series terms for processing primaries in
the presence and/or absence of complex V1 means that we can follow exactly the manipulations of
Shaw, and write down a candidate set of terms:

βLOQC(z) =
∞∑

n=0

(−1/2)n

n!
β

(n)
1 (z)

(∫ z

0
β1(z′)dz′

)n

.

=
∫ ∞

−∞
eik[z− 1

2

∫ z
0 β1(z′)dz′]β1(k)dk,

(12)

following equation (4) in the second step.

The conjecture of Innanen and Weglein leads us to look to this relationship as the first step to
understanding how the ISS might operate to correct for the attenuative effects of Q without ever
determining Q itself. We may make some preliminary comments about the form of this summed
subseries to that end.

1. Equation (12) operates without knowing or determining non-reference parameters. The only
input is β1, which is computed directly from the data and reference Green’s operators.

2. Since events in the data record from an experiment with 1/Q 6= 0 are smoothed, so too
will β1(z) be smoothed, since the two quantities are related by an integral. The objective
of a Q compensation subseries must be to unsmooth β1(z), boosting its large-wavenumber
components appropriately.
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3. Equation (12) has the ability, at least mechanically, to reinstate decayed large wavenumber
signal components. Notice that if β1 ∈ C, the exponential operator acting on β1(k) has a
component similar to the ill-conditioned 1/M∆T (k) of equation (7).

4. This summed subseries boosts large wavenumber components of β1(k), in computing the
output at a given z. It does so using an operator that, rather than relying on a known
distribution of Q values (as in standard Q compensation) contains the cumulative (integrated)
complex linear perturbation down to that z. This implies a Q processing framework, in which
nonlinear communication between data events interrogates the amplitudes of the data for
complex, Q-corrective information.

In this paper we will rely on numerical tests of equation (12) to validate this last statement.

4 Numeric examples

Here I illustrate some numerical tests of the algorithm implied by equation (12). Representing the
complex linear inverse as β1 = β1R + iβ1I , we approximate the operator in equation (12) by

eik[z− 1
2

∫ z
0 β1(z′)dz′] ≈ eik[z− 1

2

∫ z
0 βR1(z′)dz′]

(
Wg(k)e

k
2

∫ z
0 βI1(z′)dz′

)
, (13)

truncating the highest wavenumber components with a shouldered gate function Wg, that is defined
to be a boxcar function convolved with a Gaussian, normalized to unit height. This function may
be altered using the width of the gate and the variance of the Gaussian as appropriate given an
estimate of ambient noise level, etc. For the current effort, in which no noise is included, the cutoff
is kept very high, excluding only the largest singular values of the operator.

Figure 1a contains an example data set associated with a 1D normal incidence experiment, in
which waves propagate everywhere with c0 = 1500m/s, and contrasts are permitted in Q only. The
reference medium is non-attenuative. Figure 1b illustrates the associated β1(z). The smoothing
and attenuation of the lower interfaces is clear. Figure 1c illustrates the derivative of β1(z) plotted
against the first derivative of its non-attenuated companion (i.e. what we would like β1 to be
transformed into after compensation).

Figures 2, 3 and 4 illustrate the effect of the LOQC series on the three events that have experienced
attenuation.

A significant level of Q-compensation is noticeable within these events. The ‘leading order’ nature
of the subseries is also noticeable, however, in the differences yet present between the LOQC results
and the ‘perfect’ benchmark.
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Figure 1: Input data and linear inverse example. (a) Input data from 4-layer example: lower three events are

strongly attenuated by layer Q. (b) Imaginary component of the linear inverse β1(z): reconstructed contrasts are

smoothed as linear inversion with acoustic reference attempts no Q compensation. (c) Input data (blue) plotted

against corresponding data with attenuation exactly removed (black): the goal of Q compensation will be to make the

blue signal resemble the black signal as closely as possible. Using ISS methods this will be attempted with no knowledge

or determination of the layer Q values.
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Figure 2: Leading order Q compensation example. (a) Attenuated data record (black) plotted against 0.25 ×
β′LOQC(z), i.e. the Q compensated result transformed into data space (red); (b) detail of (a) at first event; (c)

data record (blue) vs. un-attenuated data (black) vs. LOQC result (red); (d) detail of (c) at first event. A strong

level of correction is noted: the difference between black and red in (d) illustrates the leading-order nature of this

algorithm.
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Figure 3: Leading order Q compensation example. (a) Attenuated data record (black) plotted against 0.25 ×
β′LOQC(z), i.e. the Q compensated result transformed into data space (red); (b) detail of (a) at second event; (c) data

record (blue) vs. un-attenuated data (black) vs. LOQC result (red); (d) detail of (c) at second event. A strong level of

correction is noted: the difference between black and red in (d) illustrates the leading-order nature of this algorithm.
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Figure 4: Leading order Q compensation example. (a) Attenuated data record (black) plotted against 0.25 ×
β′LOQC(z), i.e. the Q compensated result transformed into data space (red); (b) detail of (a) at third event; (c)

data record (blue) vs. un-attenuated data (black) vs. LOQC result (red); (d) detail of (c) at third event. A strong

level of correction is noted: the difference between black and red in (d) illustrates the leading-order nature of this

algorithm.
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5 Conclusions

We have presented a mechanism for, and some preliminary numerical tests of, the non-linear con-
struction of a Q compensation operator directly in terms of an attenuated data set.

The aims and plans for development of these ideas and algorithms are as follows. First, the un-
derlying theory involves fully 3D media: ideally, the development of the Q-compensation operator
will fully realize this multidimensional potential. To that end, the lessons gleaned from the mul-
tidimensional form of the imaging subseries, which, as we have noted, are driven by the same
mathematical mechanisms as those which construct the Q operator, will be applicable here (Liu
et al., 2004). Secondly, the “leading-order” nature of this operator construction is visible in the
accuracy, or completeness, of the compensation, at lower contrasts than in the case of the imaging
or reflector location incarnation of the series. This suggests that the greatest efficacy may stem
from the development of the high-order imaging terms as applied to this problem.

Finally, a gulf exists between this current development and a form that genuinely fits into the
“Q-compensation” idiom (e.g. Hargreaves and Calvert, 1991; Song and Innanen, 2002). This is
because at present it is rudimentary in its ability to act as a data → data mapping. Ultimately,
the same level of effectiveness that currently exists in the free-surface multiple elimination and
internal multiple attenuation methods is sought: in particular, (to as great an extent as possible)
that a model-type independent algorithm, acting directly on an input data set, outputs, directly, a
Q-compensated data set.

6 Acknowledgments

The authors gratefully acknowledge the support of the sponsors and personnel of M-OSRP (Uni-
versity of Houston) and CDSST (University of British Columbia).

References

[Aki, 2002] Aki, K. and Richards, P. G., Quantitative Seismology, 2002: University Science Books,
(2002): 2nd Ed.

[Hargreaves and Calvert, 1991] Hargreaves, N. D. and Calvert, A. J., Inverse Q-filtering by Fourier
transform, 1991: Geophysics 56, 519–527.

[Innanen and Weglein, 2003] Innanen, K. A. and Weglein, A. B., Construction of Absorp-
tive/Dispersive Wave Fields with the Forward Scattering Series, 2003: Journal of Seismic Explo-
ration, 12, 259–282.

[Innanen and Weglein, 2004] Innanen, K. A. and Weglein, A. B., Linear inversion for absorp-
tive/dispersive medium parameters, 2004: Proceedings of the Society of Explorational Geo-
physicists/Denver 2004 International Exposition and 74th Annual Meeting.

[Liu et al., 2004] Liu, F., Nita, B., Weglein, A. B., and Innanen, K. A., Inverse scattering series
for vertically and laterally varying media, 2004: M-OSRP 04 Annual Report.

292



Non-linear Q-compensation directly from seismic reflection data MOSRP04

[Shaw, 2005] Shaw, S. A., An inverse scattering series algorithm for depth imaging of reflection
data from a layered acoustic medium with an unknown velocity model, 2005: Ph.D. Thesis,
University of Houston.

[Song and Innanen, 2002] Song, S. G. and Innanen, K. A., Multiresolution modeling and wavefield
reconstruction in attenuating media, 2002: Geophysics 67, 1192–1201.

[Weglein, 2003] Weglein, A. B., Araujo, F. A., Carvalho, P. M., Stolt, R. H., Matson, K. H.,
Coates, R., Foster, D. J., Shaw, S. A., and Zhang, H., Topical Review: Inverse-scattering Series
and Seismic Exploration, 2003: Inverse Problems, 19, R27–R83.

[Zhang and Weglein, 2005] Zhang, H., and Weglein, A. B., Topical Review: Inverse-scattering Se-
ries and Seismic Exploration, 2005: M-OSRP04 Annual Report.

293



The inverse scattering series for tasks associated with primaries:
Depth imaging and direct non-linear inversion of 1D variable
velocity and density acoustic media

Haiyan Zhang and Arthur B. Weglein

Abstract

This paper presents the first analysis, and direct depth imaging and inversion algorithms for
tasks associated with primaries for a variable velocity and density acoustic medium. The method
derives from the inverse scattering series, and hence assumes the actual subsurface properties
governing the propagation of waves is neither known nor determined. In this first foray into the
multi-parameter inverse series, we simplify the analysis by assuming earth properties are to only
vary in depth, and the required data is a shot record. The depth imaging algorithm without the
velocity first decides if the input velocity is adequate, and if adequate conventional migration
is prescribed. If the data decides the verdict on the velocity is inadequate it acts to remove the
incorrect image and constructs the correct one, without knowing or determining the velocity.
Other terms in the algorithm are identified as performing non-linear direct AVO, and once
again, allow the data self determination of overburden velocity adequacy, and acts accordingly
to improve upon linear estimates of property changes. The role of velocity is clarified, as
central and all-important in location, in that only an incorrect velocity causes a depth imaging
response from the series, independent of how you parameterize the acoustic problem, or what
error other properties might suffer. Benefit of non-linear direct inversion is demonstrated over
linear standard procedure, for a set of examples using analytic and numerical techniques. The
common problem of linear “leaking” between linear property change predictions is also addressed
by the series, and located and analyzed in this paper.

1 Introduction

The ultimate objective of inverse problems is to determine medium and target properties from
measurements external to the object under investigation. At the very first moment of problem def-
inition, there is an immediate requirement and unavoidable expectation, that the model type of the
medium be specified. In that step of model type specification, the number and type of parameters
and dimension of spatial variation of those parameters are given, and carefully prescribed, and in
that way you provide the inverse problem with clarity and meaning. Among the different model
types used in exploration seismology are, e.g., acoustic, elastic, heterogeneous, anisotropic, and
anelastic, and perhaps most important, the dimension of variability of the properties associated
with these model types. One would reasonably expect that the details of methods and algorithms
for inversion objectives, and any tasks associated with achieving those ultimate objectives, would
overall and each separately depend upon that starting assumption on model type. However, the
ultimate objective of seismic inversion has never been achieved in a straight ahead single step man-
ner directly from the seismic data, and that lack of success has not been due to a lack of computer
power. The indirect model matching procedures have that computer power problem, especially in
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the applications to a multi-dimensional complex earth, where it is rare to have a reasonable proxi-
mal starting model. Those complex ill-defined geologic circumstances are the biggest impediments
and challenges to current exploration and production seismic effectiveness.

The only direct multi-dimensional inversion procedure for seismic application, the inverse scatter-
ing series (ISS), does not require a proximal starting model and only assumes reference medium
information. Of course, the whole inverse series has very limited application (Matson, 1997). What
makes ISS powerful is the so-called task isolated subseries which is a subset of the whole series that
acts like only one task is performed for that subset (Weglein et al., 2003). All of these subseries
act in a certain sequence so that the total seismic data can be processed accordingly. The order
of processing is (1) free surface multiple removal (2) internal multiple removal (3) imaging and (4)
inversion. The free surface multiple removal and internal multiple attenuation subseries have been
presented by Weglein et al. (1997). Those two multiple procedures are model type independent,
i.e., they work for acoustic, elastic and anelastic medium. Taking internal multiples from attenua-
tion to elimination is being studied. The task specific subseries associated with primaries (i.e., for
imaging and inversion) have been progressed too (Weglein et al., 2002, Innanen, 2003, Shaw et al.,
2003, Liu et al., 2005 and Shaw, 2005). Compared with model type independent multiple removal
procedures, there is a full expectation that tasks and algorithms associated with primaries will have
a closer interest in model type. For example, there is no way to even imagine that medium property
identification can take place without reference to a specific model type. Tasks and issues associated
with structural determination, without knowing the medium, are also vastly different depending
on the dimension of variation number of velocities that are required for imaging. Hence, a staged
approach and isolation of tasks philosophy is essential in this yet tougher neighborhood, and even
more in demand for seeking insights and then practical algorithms for these more complicated and
daunting objectives. We adopt the staged and isolation of issues approach for primaries. The iso-
lated task achievement plan can often spin-off incomplete but useful intermediate objectives. The
test and standard is not necessarily how complete the method is but rather how does it compare
to, and improve upon, current best practice.

The stages within the strategy for primaries are as follows: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave, (2) 1D earth with one parameter
subsurface and offset data, one shot record; (3) 2D earth with one parameter, velocity, varying in x
and z, and a suite of shot records; (4) 1D acoustic earth with two parameters varying, velocity and
density, one propagation velocity, and one shot record of PP data, and (5) 1D elastic earth, two
elastic isotropic parameters and density, and two wave speeds, for P and S waves, and PP, PS, SP,
and SS shot records data collected. This paper takes the first step of direct non-linear inversion
methodology, and task isolation and specifically for tasks associated with primaries, into a world
of more that one property changing, stage (4). The model is acoustic and a second paper in this
set generalizes this for the elastic case. We take these steps and learn to navigate through this
complexity and steer it towards useful and powerful algorithms.

In this paper, for the first time, a two-parameter direct non-linear inversion solution is obtained for
1D acoustic media 2D experiment. From this solution, the tasks for imaging-only and inversion-
only terms are separated successfully. Tests with analytic data indicate significant added value,
beyond linear estimates, in terms of both the proximity to actual value and the increased range of
angles over which the improved estimates are useful.

A closed form of the inversion terms for one interface case is also obtained. This closed form would
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be very useful in predicting the precritical data using the postcritical data.

We also found a special parameter ∆c (∆c = c− c0), i.e., P-velocity change across an interface. Its
born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is same as that of ∆c.
After exchanging the parameters, we got another form of the non-linear solution. There would be
no leakage correction at all in this solution. And it obviously indicates that the imaging terms care
only about velocity changes. The mislocation is due to the wrong velocity. This is suggestive of
possible generalization to multi-D medium, also of possible model type independent imaging which
only depends on velocity changes.

The paper has the following structure: Section 2 is a brief introduction to the inverse scattering
series. In section 3 we show the derivation in detail and then derive the closed form followed
by numerical tests. Last section contains further discussions about the special parameters and
conclusions.

2 Inverse scattering series

Consider the basic wave equations (Weglein et al., 2003)

LG = δ, (1)

L0G0 = δ, (2)

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s functions.

We define the perturbation V = L0−L (Weglein et al., 2002). The Lippmann- Schwinger equation,

G = G0 + G0V G, (3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates the
Born series

G = G0 + G0V G0 + G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 + G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)

where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

Expanding V as a series in orders of D (Weglein et al., 1997)

V = V1 + V2 + · · · , (6)

then substituting (6) into (5) and evaluating (5) on the measurement surface yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)
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Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (10)

....

Equations (8)–(10) calculate V1, V2, . . ., and hence achieve full inversion for V (see eq. (6)) from
the recorded data D (with free surface and internal multiples) and the Green’s function of the
reference medium G0.

3 Derivation of α1, β1 and α2, β2

To illustrate task (4), we will consider a 1D acoustic two-parameter earth model (e.g. bulk modulus
and density or velocity and density). We start with the 3D acoustic wave equations in the actual
and reference medium (Clayton and Stolt, 1981, Weglein et al., 1997)

[
ω2

K(r)
+∇ · 1

ρ(r)
∇

]
G(r, rs; ω) = δ(r− rs), (11)

[
ω2

K0(r)
+∇ · 1

ρ0(r)
∇

]
G0(r, rs; ω) = δ(r− rs), (12)

where G(r, rs; ω) and G0(r, rs; ω) are respectively the free-space causal Green’s operators that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-bulk modulus, c
is P-wave velocity and ρ is the density. Those quantities with subscript “0” are for the reference
medium, and, those without the subscript are for the actual medium. Then the perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)

where α = 1− K0
K , β = 1− ρ0

ρ . Assuming both ρ0 and c0 are constants, eq. (12) becomes

(
ω2

c2
0

+∇2

)
G0(r, rs; ω) = ρ0δ(r− rs), (14)

and for the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)

K0
+

1
ρ0

β(z
∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

We expand V (z,∇), α(z) and β(z) respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)
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α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Then we have

V1(z,∇) =
ω2α1(z)

K0
+

1
ρ0

β1(z)
∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)

K0
+

1
ρ0

β2(z)
∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)

....

Substituting (19) into (8), we can get the linear solution for α1 and β1 in frequency domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (21)

where the subscripts s and g denote source and receiver quantities respectively, and qg, θ and
k = ω/c0 shown in Figure 1, have the following relations (Matson, 1997)

qg = qs = k cos θ,

kg = ks = k sin θ.

q

gq k

gk

z

000
,, Kc r

Kc ,, r

Figure 1: The relationship between qg, kg and θ.

Similarly, substituting (20) into (9), we can get the solution for α2(z) and β2(z) as a function of
α1(z) and β1(z)

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)− 1

2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2 cos4 θ

α′1(z)

z∫

0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫

0

dz′[α1(z′)− β1(z′)], (22)
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where α′1(z) = dα1(z)
dz , β′1(z) = dβ1(z)

dz .

We have obtained the first two parameter direct non-linear inversion of 1D acoustic media for a 2D
experiment. As shown in (21) and (22), given two different angles θ, we can determine α1, β1 and
then α2, β2. For a single-interface example, we can also show that only the first three terms on the
right hand side contribute to amplitude correction, while the last two terms perform imaging in
depth since they will be zero after the integration across the interface. Therefore, in this solution,
the tasks for imaging-only and inversion-only terms are separated successfully. If another choice
of free parameter other than θ (e.g., ω or kh) was selected, then the functional form between the
data and the first order perturbation changes. Furthermore, the relationship between the first and
second order perturbation is then also different, and new analysis would be required for the purpose
of identifying specific task separated terms. In our experience, the choice of θ as free parameter
(for a 1D medium) is particularly well suited for allowing a task separated identification of terms in
the inverse series. Details about the significance of this solution will be presented in the following
sections.

4 A special case: one interface model

In this section, we derive a closed form for the inversion terms. From this closed form, we can easily
get the same results as those in eq. (21) and (22). We also show some numerical tests using analytic
data. From the numerical results, we see how the corresponding non-linear terms contribute to the
relative changes in the P-wave bulk modulus

(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and

velocity
(

∆c
c

)
respectively.

4.1 Closed form for the inversion terms

4.1.1 Incident angle not greater than critical angle, i.e. θ ≤ θc

For a single interface example, the reflection coefficient has the following form (Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c2

1/c2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c2
1/c2

0) sin2 θ
. (23)

Also, from the definitions of α and β we have

α = 1− K0

K1
= 1− ρ0c

2
0

ρ1c2
1

,

and
β = 1− ρ0

ρ1
.

After adding 1 on both sides of (23), we can get

1 + R(θ) =
2 cos θ

cos θ + (ρ0/ρ1)
√(

c2
0/c2

1

)− sin2 θ
. (24)
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Then, using the definitions of α and β, after some mathematics, (24) becomes

4R(θ)
(1 + R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ, (25)

which is the closed form we derived for two parameter case.

4.1.2 Incident angle greater than critical angle, i.e. θ > θc

For θ > θc, (23) becomes

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ − i

√
(c2

1/c2
0) sin2 θ − 1

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ + i
√

(c2
1/c2

0) sin2 θ − 1
. (26)

Then, (24) becomes

1 + R(θ) =
2 cos θ

cos θ + i (ρ0/ρ1)
√

sin2 θ − (
c2
0/c2

1

) , (27)

which leads to the same closed form as (25)

4R(θ)
(1 + R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ.

As we see, this closed form is valid for all incident angles. Therefore, the precritical angle data
should be able to be predicted using the postcritical angle data.

In addition, for normal incidence (θ = 0) and constant density (β = 0) media, the closed form (25)
will be reduced to

α =
4R

(1 + R)2
. (28)

This represents the relationship between α and R for one parameter 1D acoustic constant density
medium and 1D normal incidence obtained in (Innanen, 2003). In this case, α becomes 1 − c2

0/c2
1

and R becomes (c1 − c0) / (c1 + c0).

4.1.3 Derivation of the inversion terms from the closed form

From the closed form (25), using the Taylor expansion

1
(1 + R(θ))2

=
[
1−R(θ) + R2(θ)− . . .

]2

on the left hand side, and setting the terms of equal order in the data equal, we have

α1

cos2 θ
+ (1− tan2 θ)β1 = 4R(θ), (29)

α2

cos2 θ
+ (1− tan2 θ)β2 = −1

2
α2

1

cos4 θ
− 1

2
(1 + tan4 θ)β2

1 +
tan2 θ

cos2 θ
α1β1. (30)
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Figure 2: 1D one interface acoustic model.

Specifically, for the one interface example (in Figure 2), we assume the interface surface is at z = a,
and suppose zs = zg = 0.

Using perfect data (Clayton and Stolt, 1981, Weglein et al., 1986)

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg
, (31)

and substituting (31) into (21), after Fourier transformation over 2qg, for z > a and fixed θ, we get

1
cos2 θ

α1(z) + (1− tan2 θ)β1(z) = 4R(θ)H(z − a). (32)

Also, the non-linear solution (22) will reduce to

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)− 1

2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z), (33)

The two equations (32) and (33) agree with (29) and (30) respectively.

4.2 Numerical test

From (32), choosing two different angles to solve for α1 and β1

β1(θ1, θ2) = 4
R(θ1) cos2 θ1 −R(θ2) cos2 θ2

cos(2θ1)− cos(2θ2)
, (34)

α1(θ1, θ2) = β1(θ1, θ2) + 4
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
. (35)

Similarly, from (33), given two different angles we can solve for α2 and β2 in terms of α1 and β1

β2(θ1, θ2) =
[
−1

2
α2

1

(
1

cos2 θ1
− 1

cos2 θ2

)
+ α1β1

(
tan2 θ1 − tan2 θ2

)− 1
2
β2

1

×
(

cos2 θ1 − cos2 θ2 +
sin4 θ1

cos2 θ1
− sin4 θ2

cos2 θ2

)]
/ [cos(2θ1)− cos(2θ2)] , (36)
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α2(θ1, θ2) =β2(θ1, θ2) +
[
−1

2
α2

1

(
1

cos4 θ1
− 1

cos4 θ2

)
+ α1β1

(
tan2 θ1

cos2 θ1
− tan2 θ2

cos2 θ2

)

−1
2
β2

1

(
tan4 θ1 − tan4 θ2

)]
/

(
tan2 θ1 − tan2 θ2

)
. (37)

Where α1 and β1 in (36) and (37) denote α1(θ1, θ2) and β1(θ1, θ2) respectively.

For a specific model, ρ0 = 1.0g/cm3, ρ1 = 1.1g/cm3, c0 = 1500m/s and c1 = 1700m/s. In the
following figures, we gave the results for the relative changes in the P-wave bulk modulus

(
α = ∆K

K

)
,

density
(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
corresponding to different pairs of θ1 and

θ2.

From Figure 3, we can see that when we add α2 to α1, the result is much closer to the exact value
of α. Furthermore, the result is better behaved, i.e., the plot surface becomes flatter, over a larger
range of precritical angles. Similarly, from Figure 4, we can also see the results of β1 +β2 are much
better than those of β1. In addition, we can see that the sign of β1 is wrong at some angles, while,
the results for β1 + β2 always have the right sign. So after including β2, we would correct the sign
of the density, which is very important in the earth identification. And also the results of ∆I

I (see
Figure 5 ) and ∆c

c (see Figure 6) are much closer to their exact values respectively compared to the
linear results.

Especially, we notice that the values of
(

∆c
c

)
1

are always greater than zero, that is, the sign of
(∆c)1 is always positive, which is same as that of the exact value ∆c. We will further discuss this
in the next section.

5 Special parameters for linear inversion

As we mentioned before, in general, since the relationship between data and target property changes
is non-linear, linear inversion will produce errors in target property prediction. When one actual
property change is zero, the linear prediction of the change can be non-zero. Also, when the actual
change is positive, the predicted linear approximation can be negative. There is a special parameter
for linear inversion of acoustic media, that never suffers the latter problem.

From (23) we can see when c0 = c1, the reflection coefficient is independent of θ, then from the
linear form (35), we have

(
∆c

c

)

1

=
1
2
(α1 − β1) = 0 when ∆c = 0,

i.e., when ∆c = 0, (∆c)1 = 0. This generalizes to when ∆c > 0, then (∆c)1 > 0, or when ∆c < 0,
then (∆c)1 < 0, as well. This can be shown mathematically (See Appendix B for details).

Therefore, we can, firstly, get the right sign of relative change in P-wave velocity from the linear
inversion (∆c)1, then, get more accurate amplitude when we include non-linear terms.

We also note that when the velocity doesn’t change across an interface, i.e., c0 = c1, looking at the
integrand of imaging terms α1 − β1 (see (22)), the image doesn’t move because α1 − β1 = 0 in this
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situation. We can see this more explicitly when we change the two parameters α and β to ∆c
c and

β. Using the two relationships below (See details in Appendix A)
(

∆c

c

)

1

=
1
2
(α1 − β1),

and (
∆c

c

)

2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]

,

we can rewrite (22) as

1
cos2 θ

(
∆c

c

)

2

(z) + β2(z) =
cos2 θ − 2
2 cos4 θ

(
∆c

c

)2

1

(z)− 1
2
β2

1(z)

− 1
cos4 θ

(
∆c

c

)′

1

(z)

z∫

0

dz′
(

∆c

c

)

1

− 1
cos2 θ

β′1(z)

z∫

0

dz′
(

∆c

c

)

1

. (38)

This equation tells us many interesting things. One is that there is no leakage correction at all in
this expression. The other is that, when we look at the integrand

(
∆c
c

)
1

of the imaging terms, it
indicates obviously that if we have the right velocity, the imaging terms will automatically be zero
even without doing any integration. Otherwise, if we don’t have the right velocity, these imaging
terms would be used to move the interface closer to the right location from the wrong location.
The conclusion is that the depth imaging terms depend only on the velocity errors.

6 Conclusion

Including terms beyond linear in earth property identification subseries provides added value. Al-
though the model we used in the numerical test is simple, equ. (21) and (22) also work for larger
contrast and complex targets. The inverse scattering series is a direct inversion procedure which
inverts data independent of the properties of the target, without assumptions such as smooth ge-
ometry or small contrast. This work is a major step towards the realism for target identification.
The numerical results are encouraging and this work will be extended to study the elastic case
using three parameters (see, e.g., Boyse, 1986, Boyse and Keller, 1986).
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Appendix A

The following is the derivation of
(

∆c
c

)
1
,

(
∆c
c

)
2
,

(
∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1 and α2, β2.
Where ∆c = c− c0, ∆I = I − I0, ∆K = K −K0 and ∆ρ = ρ− ρ0.

Since K = c2ρ, then we have

(c−∆c)2 =
K −∆K

ρ−∆ρ
.

Divided by c2, the equation above will become

2
(

∆c

c

)
−

(
∆c

c

)2

=
∆K
K − ∆ρ

ρ

1− ∆ρ
ρ

.

Remember that α = ∆K
K and β = ∆ρ

ρ , the above equation can be rewritten as

2
(

∆c

c

)
−

(
∆c

c

)2

=
α− β

1− β
.

Then we have

2
(

∆c

c

)
−

(
∆c

c

)2

= (α− β)(1 + β + β2 + · · · ), (39)

where the series expansion is valid for |β| < 1.

Similar to (17) and (18), we expand ∆c
c as

(
∆c

c

)
=

(
∆c

c

)

1

+
(

∆c

c

)

2

+ · · · . (40)

Then substitute (40), (17) and (18) into (39), and set those terms of equal order equal on both
sides of (39), we will get (

∆c

c

)

1

=
1
2
(α1 − β1), (41)

and (
∆c

c

)

2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]

. (42)

Similarly, using I = cρ, we’ll have

(I −∆I)2 = (K −∆K)(ρ−∆ρ).

Divided by I2, the equation above will become

2
(

∆I

I

)
−

(
∆I

I

)2

= α + β − αβ. (43)

We expand ∆I
I as (

∆I

I

)
=

(
∆I

I

)

1

+
(

∆I

I

)

2

+ · · · . (44)
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Then substitute (44), (17) and (18) into (43), and set those terms of equal order equal on both
sides of (43), we will get (

∆I

I

)

1

=
1
2
(α1 + β1), (45)

and (
∆I

I

)

2

=
1
2

[
1
4
(α1 − β1)2 + (α2 + β2)

]
. (46)

Appendix B

For the single interface example, from (35), we have
(

∆c

c

)

1

= 2
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
.

The reflection coefficient is

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c2

1/c2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c2
1/c2

0) sin2 θ
.

Let
A(θ) = (ρ1/ρ0)(c1/c0)

√
1− sin2 θ,

B(θ) =
√

1− (c2
1/c2

0) sin2 θ.

Then
R(θ1)−R(θ2) = 2

A(θ1)B(θ2)−B(θ1)A(θ2)
[A(θ1) + B(θ1)] [A(θ2) + B(θ2)]

,

where the denominator is greater than zero. The numerator is

2 [A(θ1)B(θ2)−B(θ1)A(θ2)] =2(ρ1/ρ0)(c1/c0)
[√

1− sin2 θ1

√
1− (c2

1/c2
0) sin2 θ2

−
√

1− sin2 θ2

√
1− (c2

1/c2
0) sin2 θ1

]
.

Now, we let

C =
√

1− sin2 θ1

√
1− (c2

1/c2
0) sin2 θ2,

D =
√

1− sin2 θ2

√
1− (c2

1/c2
0) sin2 θ1.

Then,

C2 −D2 =
(

c2
1

c2
0

− 1
)

(sin2θ1 − sin2θ2).

When c1 > c0 and θ1 > θ2 , we have (Noticed that both C and D are positive.)
(

c2
1

c2
0

− 1
)

(sin2θ1 − sin2θ2) > 0,

305



Depth imaging and direct non-linear inversion: acoustic media MOSRP04

so
R(θ1)−R(θ2) > 0;

Similarly, when c1 < c0 and θ1 > θ2 , we have
(

c2
1

c2
0

− 1
)

(sin2θ1 − sin2θ2) < 0,

so
R(θ1)−R(θ2) < 0.

Remembering that
(

∆c
c

)
1

= 2 R(θ1)−R(θ2)
tan2 θ1−tan2 θ2

. So for c1 > c0, (∆c)1 > 0 and for c1 < c0, (∆c)1 < 0 .
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Figure 3: α1 (top) and α1 + α2 (bottom) displayed as a function of two different angles. The graphs on the right
are the corresponding contour plots of the graphs on the left. In this example, the exact value of α is 0.292.

308



Depth imaging and direct non-linear inversion: acoustic media MOSRP04

0
10

20
30

40
50

60

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0

10

20

30

40

50

60

b
e
ta

1

th
e
ta

2

theta1

0.0780

0.0750

0.0500
0.0250

-0.0250
-0.0750-0.125

-0.225

0 10 20 30 40 50 60

0

10

20

30

40

50

60

th
e
ta

1

theta2

0
10

20
30

40
50

60

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0

10

20

30

40

50

60

b
e
ta

1
+
b
e
ta

2

th
et

a
2

theta1

0.0969

0.0988

0.103

0.110

0.170

0.230

0.290

0.410

0 10 20 30 40 50 60

0

10

20

30

40

50

60

th
e
ta

1

theta2

Figure 4: β1 (top) and β1 + β2 (bottom). In this example, the exact value of β is 0.09.
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Figure 5: Linear approximation to relative change in impedance (see details in Appendix A)
(
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)
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2
(α1 + β1)
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=
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4
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this example, the exact value of ∆I
I

is 0.198.
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Figure 6: Linear approximation to relative change in velocity (see details in Appendix A)
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Abstract

In this paper, we present the first velocity independent depth imaging and non-linear direct
target identification method and algorithm for 1D elastic media from the inverse scattering
series (ISS). The terms for moving mislocated reflectors are separated from amplitude analysis
terms. The non-linear direct elastic inversion method requires that PP, PS, SP and SS data as
input. We show how PP data can be used to approximately synthesize the PS, SP and SS data.
We show that in all cases where this synthesis is reasonably accurate, the subsequent non-linear
inversion provides added value over linear and that situation represents three out of four cases
examined. Even in the one case where the approximate data synthesis is far from accurate, some
mild value is derived from non-linear prediction results in comparison with linear estimates. In
the four cases where at least one of the synthesized data is reasonable, then improved estimates
are reported in comparison to linear methods. We can reasonably infer that with actual PP, PS,
SP and SS data collected, all four cases will be of added value when compared to linear inverse
procedures. In several cases linear inversion predicted the wrong sign for changes in density.
The non-linear prediction has the correct sign in each case. The method is direct with neither
a model matching nor cost function minimization.

1 Introduction

The objective of seismic exploration is to predict the location and properties of the hydrocarbon
resources in the earth (i.e. imaging and inversion) using recorded seismic data. However, there is
a large variety of seismic events in the recorded data while only one kind is regarded as signal by
the imaging and inversion procedures: primaries. The rest of the data is considered noise. That
means a series of preprocessing operations need to be performed on the seismic data before imaging
and inversion in order to remove the unwanted noise. The operations include wavelet estimation,
deghosting, free surface multiple removal and internal multiple removal. In M-OSRP projects, with
the exception of wavelet estimation (Guo et al., 2004) and deghosting (Zhang and Weglein, 2004),
algorithms which are derived from Green’s theorem, the rest of the tasks are performed by only
one tool: the inverse scattering series (ISS).

The original inverse scattering series research aimed at task (1), free surface multiple removal and
(2), internal multiple removal, was developed and applied successfully in 2D and 3D field data
(Weglein et al., 1997 and Weglein et al., 2003). The next step is the processing of primaries.
Beginning with 2001, we started to look at the tasks that work on primaries, which include task
(3), depth imaging and task (4), parameter estimation. We started by analyzing a one parameter
1D acoustic constant density medium and 1D normal incidence (Weglein et al., 2002, Innanen,
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2003, Shaw et al., 2003 and Shaw, 2005). The extension to a one parameter 2D acoustic medium
is studied by Liu et al. (2005). In this paper we made a major step towards realism for target
identification by extending the earlier work on non-linear inversion of 2D acoustic data for a two
parameter 1D medium (Zhang and Weglein, 2003) to three parameter 1D elastic medium. This is
the first step of direct non-linear inversion from acoustic to elastic – a more realistic world. We take
these steps in 1D to allow the best chance to use analytic data to do the numerical tests and hence
understand our workings within a 1D world. It would be very useful, as a framework and insights,
for launching to the next more realistic step – the multi-parameter and multi-D medium. However,
more realism is more complicated with more issues involved. Following the task separation strategy,
we ask the question what kind of tasks should we expect in this more complex, elastic, setting? In
acoustic case, for example, there is only one velocity (P wave velocity) involved and there is only
one mislocation. The imaging terms only need to move the one mislocation to the correct location.
When we extend our previous work on two parameter acoustic case to present three parameter
elastic case, there will be four mislocations because of the two reference velocities (P wave velocity
and S velocity). Therefore, for the non-linear elastic inversion, there will be more tasks need to
be achieved. For example, the “four mislocations”, which come from linear inversion, need to be
moved to one correct location.

It is important to point out that the above four tasks we mentioned are not direct applications
of the whole inverse scattering series (ISS), which has very limited application (Matson, 1997).
Instead, each task is performed by a task specific subseries which is a subset of the whole series
that acts as though only one specific task, and no other, existed (Weglein et al., 2003). What makes
this task specific subseries method attractive is that each subseries has less to achieve and hence
better convergence properties than the full series. As in the case of the full series, a task oriented
subseries only requires data and information about a reference medium; no information about the
subsurface is ever required. This characteristic is especially useful when the current methods (like
velocity dependent migration or imaging) fail due to inadequate information about the subsurface
in complex geometry and complex medium.

So, why are we trying to use non-linear inversion? This is because the character (i.e., the amplitude
and phase) of the reflected data events, depends on the properties of the medium that the wave
travelled through and the contrast in properties across reflectors. The reflection process (e.g., the
reflection coefficient for 1D normal incidence acoustic model) has a non-linear dependence on any
property change at the reflector, and depends on the incident angle and also the geometry of the
reflector which can be, e.g., horizontal, dipping, curved, corrugated and diffractive. Current state
of the art seismic analysis techniques typically assume a simple linear relationship between the
reflection coefficient and changes in properties, and a simple horizontal reflector geometry. Those
assumptions are often violated in practice and can cause serious misinterpretations and erroneous
predictions which would affect the drilling decisions.

In this report we will use the direct non-linear inversion method for estimation of material property
changes that avoids small property change assumptions, or model-matching procedures, or assumes
a simple target geometry. To date, this is the only candidate method with this more realistic, more
physically complete, and, hence more reliable prediction capability and potential. In this report,
the first non-linear inversion term for three parameter 1D elastic medium is presented. In theory,
it is impossible to perform exact inversion without all four components of data. However, as you
can find in the following numerical tests for four models, very good inversion results can still be
achieved even when only PP data measurements are available. This means that we could perform
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elastic inversion only using pressure measurements, i.e. towed streamer data. The numerical test
results show that, for most of the models we used, this particular non-linear approach (only use
PP data as input) provides useful results especially in correcting the sign of the densities obtained
from linear inversion.

In the following we will first briefly review the theory of ISS and then present the derivations for
non-linear inversion when only PP data is available. Numerical tests are performed for four models.
Finally we’ll present some concluding remarks.

2 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium.

2.1 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (1)

L0u = f , (2)

LG = I, (3)

L0G0 = I, (4)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,
respectively, and G and G0 are the corresponding Green operators for the actual and reference
medium.

Defining the perturbation V = L0 −L, the Lippmann- Schwinger equation for the elastic media in
the displacement space is

G = G0 + G0V G. (5)

Iterating this equation back into itself generates the Born series

G = G0 + G0V G0 + G0V G0V G0 + · · · . (6)

We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have
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D = G0V G0 + G0V G0V G0 + · · · . (7)

Expanding V as a series in orders of D (Weglein et al., 1997), we have

V = V1 + V2 + V3 + · · · . (8)

Substituting Eq. (8) into Eq. (7), evaluating Eq. (7), and setting terms of equal order in the data
equal, we get the equations that determine V1, V2, . . . from D and G0.

D = G0V1G0, (9)

0 = G0V2G0 + G0V1G0V1G0, (10)

....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+

(
∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (11)

where

u =
[

u1

u2

]
= displacement,

ρ = density,

γ = bulk modulus (≡ ρα2 where α = P velocity),

µ = shear modulus (≡ ρβ2 where β = S velocity),

ω = temporal frequency (angular), and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+

(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (12)

Then,
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V ≡L0 − L

=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (13)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1. For a 1D earth (i.e. aρ, aγ and aµ are only

functions of depth z), we have

[
V 11 V 12

V 21 V 22

]
= −ρ0

[
aρω

2 + α2
0aγ∂2

1 + β2
0∂2aµ∂2 (α2

0aγ − 2β2
0aµ)∂1∂2 + β2

0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂2
1

]
.

(14)

2.2 Transform to PS space

For convenience, we change the basis from u =
[

u1

u2

]
to

(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(

φP

φS

)
=

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (15)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (16)

where Π =
(

∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
. In the reference medium, the operator L0 will transform

in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P

0 0
0 L̂S

0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(

∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P
0 = ω2/α2

0 +∇2, L̂S
0 = ω2/β2

0 +∇2, and

F = Πf =
(

FP

FS

)
. (17)

Then, in PS domain, Eq. (2) becomes,

(
L̂P

0 0
0 L̂S

0

)(
φP

φS

)
=

(
FP

FS

)
. (18)

Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1
and ĜS

0 =
(
L̂S

0

)−1
, then, displacement G0 in PS domain

becomes
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Ĝ0 = Γ0ΠG0Π−1 =
(

ĜP
0 0
0 ĜS

0

)
. (19)

So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying Eq. (5) from the left by the operator Γ0Π and from the right by the operator Π−1,
and using Eq. (19),

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠV Π−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (20)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(

ĜPP ĜPS

ĜSP ĜSS

)
. (21)

The perturbation V in the PS domain becomes

V̂ = ΠV Π−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (22)

where, as before, the left superscripts of the matrices represent the type of measurement and the
right ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (23)

It follows, from Eqs. (20) and (23) that

D̂ = Ĝ0V̂1Ĝ0, (24)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (25)

...

where D̂ =
(

D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for Eq. (1),

u = Gf . (26)

Then, in the PS domain, Eq. (26) becomes

Φ = ĜF. (27)
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On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (28)

We substitute Eq. (28) into Eq. (27), and rewrite Eq. (27) in matrix form:

(
φP

φS

)
=

(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
+

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

) (
FP

FS

)
. (29)

This can be written as the following two equations

φP = ĜP
0 FP + ĜP

0 V̂ PP
1 ĜP

0 FP + ĜP
0 V̂ PS

1 ĜS
0 FS , (30)

φS = ĜS
0 FS + ĜS

0 V̂ SP
1 ĜP

0 FP + ĜS
0 V̂ SS

1 ĜS
0 FS . (31)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kind of waves are separated. However, for
inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the above two equations (30) and (31) are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂ PP
1 ĜP

0 , (32)

φS = ĜS
0 V̂ SP

1 ĜP
0 . (33)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there are two

kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂ PP

1 ĜP
0 , and the other is the P-to-S wave

ĜS
0 V̂ SP

1 ĜP
0 . For the acoustic case, only the P wave exists, and hence we only have one equation

φP = ĜP
0 + ĜP

0 V̂ PP
1 ĜP

0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two equations (30) and (31) are
respectively reduced to

φP = ĜP
0 V̂ PS

1 ĜS
0 , (34)

φS = ĜS
0 + ĜS

0 V̂ SS
1 ĜS

0 . (35)

In this case, there is only the direct S wave ĜS
0 , and no direct wave P. There are also two kinds of

scattered waves: one is the S-to-P wave ĜP
0 V̂ PS

1 ĜS
0 , the other is the S-to-S wave ĜS

0 V̂ SS
1 ĜS

0 .

3 Linear inversion of 1D elastic medium for 2D experiment

Writing Eq. (24) in matrix form
(

D̂PP D̂PS

D̂SP D̂SS

)
=

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (36)
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leads to four equations

D̂PP = ĜP
0 V̂ PP

1 ĜP
0 , (37)

D̂PS = ĜP
0 V̂ PS

1 ĜS
0 , (38)

D̂SP = ĜS
0 V̂ SP

1 ĜP
0 , (39)

D̂SS = ĜS
0 V̂ SS

1 ĜS
0 . (40)

For zs = zg = 0, in the (ks, zs; kg, zg; ω) domain, we get

D̃PP (kg, 0;−kg, 0;ω) = −1
4

(
1− k2

g

ν2
g

)
ã(1)

ρ (−2νg)− 1
4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg) +
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg),

(41)

D̃PS(νg, ηg) = −1
4

(
kg

νg
+

kg

ηg

)
ã(1)

ρ (−νg − ηg)− β2
0

2ω2
kg(νg + ηg)

(
1− k2

g

νgηg

)
ã(1)

µ (−νg − ηg), (42)

D̃SP (νg, ηg) =
1
4

(
kg

νg
+

kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1− k2

g

νgηg

)
ã(1)

µ (−νg − ηg), (43)

D̃SS(kg, ηg) = −1
4

(
1− k2

g

η2
g

)
ã(1)

ρ (−2ηg)−
[

η2
g + k2

g

4η2
g

− 2k2
g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (44)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

.

Now, using k2
g/ν2

g = tan2 θ and k2
g/(ν2

g + k2
g) = sin2 θ, where θ is the P-wave incident angle (see

Figure 1). Then, Eq. (41) becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)− 1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (45)
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Incident P-wave

Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the compressional
wave velocity, shear wave velocity and density of the upper layer, respectively; α1, β1 and ρ1 denote the compressional
wave velocity, shear wave velocity and density of the lower layer. RPP , RSP , T PP and T SP denote the coefficients
of the reflected compressional wave, the reflected shear wave, the transmitted compressional wave and the transmitted
shear wave, respectively.

4 Non-linear inversion of 1D elastic medium for 2D experiment

Writing Eq. (25) in matrix form:

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0
0 ĜS

0

)

= −
(

ĜP
0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (46)

leads to four equations

ĜP
0 V̂ PP

2 ĜP
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PP
1 ĜP

0 − ĜP
0 V̂ PS

1 ĜS
0 V̂ SP

1 ĜP
0 , (47)

ĜP
0 V̂ PS

2 ĜS
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PS
1 ĜS

0 − ĜP
0 V̂ PS

1 ĜS
0 V̂ SS

1 ĜS
0 , (48)
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ĜS
0 V̂ SP

2 ĜP
0 = −ĜS

0 V̂ SP
1 ĜP

0 V̂ PP
1 ĜP

0 − ĜS
0 V̂ SS

1 ĜS
0 V̂ SP

1 ĜP
0 , (49)

ĜS
0 V̂ SS

2 ĜS
0 = −ĜS

0 V̂ SP
1 ĜP

0 V̂ PS
1 ĜS

0 − ĜS
0 V̂ SS

1 ĜS
0 V̂ SS

1 ĜS
0 . (50)

Because V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will
be coupled for the non-linear elastic inversion. We cannot perform the direct non-linear inversion
without knowing all components of the data.

As we stated before, when we extend our previous work on two parameter acoustic case to present
three parameter elastic case, it is not just simply adding one more parameter, but there are more
issues involved. Even for the linear case, the linear solutions we found (41), (42), (43) and (44),
are much more complicated than those for the acoustic case. We would get four different sets of
linear solution for the parameters from each component of the data respectively. Also, there would
be four mislocations because of the two reference velocities (P wave velocity and S velocity). Since
the theory is very complicated, we’re trying to look for a particular non-linear approach–only use
D̂PP as input, to do the non-linear elastic inversion. This is also trying to answer one question:
How much can we do if only given D̂PP ? When we assume that we only use D̂PP as input, we
assume that a

(1)
ρ obtained from D̂PS is the same as those obtained from D̂PP and D̂SP and that a

(1)
µ

obtained from D̂PS is the same as those obtained from D̂PP and D̂SP . Based on this assumption,
we get the following second order (first term beyond linear) elastic inversion solution,

(
1− tan2 θ

)
a(2)

ρ (z) +
(
1 + tan2 θ

)
a(2)

γ (z)− 8b2 sin2 θa(2)
µ (z)

=− 1
2

(
tan4 θ − 1

) [
a(1)

γ (z)
]2

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

+
1
2

[(
1− tan4 θ

)−
(

1
C

) (
α2

0

β2
0

− 1
)

tan2 θ

cos2 θ

] [
a(1)

ρ (z)
]2

− 4b2

[
tan2 θ −

(
1

2C

)(
α2

0

β2
0

− 1
)

tan4 θ

]
a(1)

ρ (z)a(1)
µ (z)

+ 2b4

(
tan2 θ − α2

0

β2
0

)[
2 sin2 θ − 1

C

(
α2

0

β2
0

− 1
)

tan2 θ

] [
a(1)

µ (z)
]2

− 1
2

(
1

cos4 θ

)
a(1)′

γ (z)
∫ z

0
dz′

[
a(1)

γ

(
z′

)− a(1)
ρ

(
z′

)]

− 1
2

(
1− tan4 θ

)
a(1)′

ρ (z)
∫ z

0
dz′

[
a(1)

γ

(
z′

)− a(1)
ρ

(
z′

)]

+ 4b2 tan2 θa(1)′
µ (z)

∫ z

0
dz′

[
a(1)

γ

(
z′

)− a(1)
ρ

(
z′

)]

+
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ − C

)
b2

∫ z

0
dz′a(1)′

µ

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

ρ

(
z′

)
H

(
z − z′

)

− 2
C

(
α2

0

β2
0

− 1
)

tan2 θ

(
tan2 θ − α2

0

β2
0

)
b4

∫ z

0
dz′a(1)′

µ

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

µ

(
z′

)
H

(
z − z′

)

+
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + C

)
b2

∫ z

0
dz′a(1)

µ

(
z′

)
a(1)′

ρ

(
(C − 1)z′ + 2z

(C + 1)

)
H

(
z − z′

)

− 1
2C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + 1

) ∫ z

0
dz′a(1)

ρ

(
z′

)
a(1)′

ρ

(
(C − 1) z′ + 2z

(C + 1)

)
H

(
z − z′

)
, (51)
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where a
(1)′
ρ

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C = α0

β0

√
1− β2

0
α2
0

sin2 θ

√
1−sin2 θ

= 1
b

√
1−b2 sin2 θ√
1−sin2 θ

.

The first five terms on the right side of the equation (51) are inversion terms, i.e. contribute to
amplitude correction. The other terms on the right side of the equation are imaging terms. We
can see that both inversion terms and imaging terms, especially the imaging terms, become much
more complicated. Besides some similar terms in acoustic case, we have more terms here.

This is the first analysis of the non-linear elastic inversion. The question here is how well does this
approximation work? In the following section, we see from the numerical tests that, remarkably,
this approach works very well.

5 Numerical tests

For one interface 1D elastic medium case, as shown in Figure 1, the reflection RPP coefficient has
the following form (Foster et al., 1997)

RPP =
N

D
. (52)

Here we have

N =− (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a + 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 − ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2. (53)

D =(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a + 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 + ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2. (54)

a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ,

where the subscripts “0” and “1” denote the reference medium and actual medium respectively.
Using perfect data (Clayton and Stolt, 1981, Weglein et al., 1986)

D̃PP (νg, θ) = −RPP (θ)
e2iνga

4πiνg
, (55)

and substituting Eq.(55) into Eq.(45), Fourier transform Eq.(45) over 2νg, for z > a and fixed θ,
we have

(1− tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z)− 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (56)
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In this paper, we used four models to do the numerical tests.

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity).

ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity.

ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s, α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity).

ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3; α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity.

ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s, α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s.

To test and compare methods, the top of sand reflection was modelled for oil sands with porosities
of 10, 20, and 30%. The three models used the same shale overburden. An oil/water contact model
was also constructed for the 20% porosity sand.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand. Pore
fluids have a large impact on the seismic response. Density, P-wave velocity, and the α/β ratio
of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the overlying shale.
Consequently, there is a significant decrease in density and P-bulk modulus and an increase in shear
modulus at the shale/oil sand interface.

The moderate porosity model (20%) represents deeper, more compacted reservoirs. Pore fluids
have a large impact on seismic response, but the fluid effect is less than that of the high porosity
case. The overlying shale has high density compared to the reservoir sand, but the P-wave velocity
of the oil sand exceeds that of the shale. As a result, impedance contrast is reduced, and shear
wave information becomes more important for detecting the reservoir.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids have little
effect on the seismic response of the reservoir sand. It is difficult to distinguish oil sands from brine
sands on the basis of seismic response. Impedance of the sand is higher than impedance of the
shale.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact, both
density and P-wave velocity increase in going from the oil zone into the wet zone. Because pore
fluids have no effect on shear modulus, there is no change in shear modulus.

Using these four models, we can find the corresponding RPP from Eq. (52). Then, choose three
different angles θ1, θ2 and θ3, we can get the linear solutions for a

(1)
ρ , a

(1)
γ and a

(1)
µ from Eq. (56) ,

and then get the solutions for a
(2)
ρ , a

(2)
γ and a

(2)
µ from equation (51).

There are two plots in each figure. The left ones are the results for the first order, while the right
ones are the results for the first order plus the second order. The red line denotes the corresponding
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Figure 2: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 =
2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model, the exact value of aρ is 0.06. The linear

approximation a
(1)
ρ (left) and the sum of linear and first non-linear a

(1)
ρ + a

(2)
ρ (right).

actual value. In the figures, we gave the results corresponding to different sets of angles θ1 and θ2.
The third angle θ3 is fixed as zero.

From the numerical results, we can see that all the second order provide improvements over the
linear except for model four. When we add the second order to linear order, the results become
much closer to the corresponding exact value and the surface become flatter. The most important
thing is, for all of the four models, when we add the second order to first order, the sign of aρ is
corrected. Like model four, (See Figure 11), a

(1)
ρ becomes negative for some large angles. When we

add a
(2)
ρ to a

(1)
ρ , all of the results get the right sign.

For model three, (See Figure 10), the linear result a
(1)
µ is already very close to the exact value of

aµ. Although a
(1)
µ + a

(2)
µ is still very close to the exact value, the surface looks a little further from

the red line compared to the left plot.

We believe this is due to the use of D̂PP only instead of all four components required by the
procedure. We think the reason of the three out of the four models giving very good numerical
results is that, there is at least one of the synthesized data (See figures 14 – 17) is reasonable for
the three models. All of the “predicted” values in the figures 14 – 17, are predicted by the linear
results from D̂PP . And the “actual” values are calculated from the Zoeppritz’ equations.

6 Conclusion

This paper represents the first analysis of the non-linear elastic target location and identification
and provides a user guide and useful lessons for these two non-linear tasks. In particular we show
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Figure 3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 =
2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model, the exact value of aγ is 2.01. The linear

approximation a
(1)
γ (left) and the sum of linear and first non-linear a

(1)
γ + a

(2)
γ (right).

added value and improved capability for target identification provided by the first non-linear term
in the inverse scattering inversion subseries. The theory itself needs all four components of the
data, but in this first report on this project we analyzed an algorithm which inputs only D̂PP .
Although D̂PP can itself provide useful non-linear direct inversion results, the implication of this
research is that further value would derive from actually measuring D̂PP , D̂PS , D̂SP and D̂SS , as
the method requires.
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Appendix – correction of 2003 annual report

In the derivation for the second order inversion, some difficulties were encountered. Since we know
the result of acoustic case from our earlier work (which started with the pressure wave equation), it
would be helpful for us to start with the displacement space and reduce the elastic case to acoustic
case, and finally, to compare those two acoustic results which have different starting points.

In the acoustic case, our earlier work (Weglein et al., 2003; Zhang and Weglein, 2003), if we start
directly with the pressure wave equation and choose θ as the free parameter, α and β as the two
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Figure 4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 =
2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model, the exact value of aµ is 4.91. The linear

approximation a
(1)
µ (left) and the sum of linear and first non-linear a

(1)
µ + a

(2)
µ (right).

material property parameters, we arrive at the following equation for the second order (first term
beyond linear):

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z)

=− 1
2 cos4 θ

α2
1(z)

− 1
2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2 cos4 θ

α′1(z)

z∫

0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫

0

dz′[α1(z′)− β1(z′)]. (57)

If we start with the displacement domain, as discussed, letting µ0, β0, µ, and β = 0 and choose θ
as the free parameter, aγ and aρ as the two material property parameters, the following solution
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Figure 5: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s, α1 =
3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aρ is -0.022. The linear approximation

a
(1)
ρ (left) and the sum of linear and first non-linear a

(1)
ρ + a

(2)
ρ (right).

for second order is produced:

1
cos2 θ

a(2)
γ (z) + (1− tan2 θ)a(2)

ρ (z)

=− 1
2
(tan4 θ − 1)a(1)2

γ (z)

− 1
2

(
1

cos4 θ
− 2

)
a(1)2

ρ (z)

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

− 1
2 cos4 θ

a(1)′
γ (z)

z∫

0

dz′[a(1)
γ (z′)− a(1)

ρ (z′)]

+
1
2
(tan4 θ − 1)a(1)′

ρ (z)

z∫

0

dz′[a(1)
γ (z′)− a(1)

ρ (z′)], (58)

where the definition of θ is the same as that of Eq. (57), a
(1)′
γ = da

(1)
γ

dz and a
(1)′
ρ = da

(1)
ρ

dz .

Next, we show that the two results Eq. (57) and Eq. (58) agree with each other.

Since α = 1− γ0

γ , then

aγ =
γ

γ0
− 1 =

α

1− α
= α + α2 + α3 + · · · ,
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Figure 6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s, α1 =
3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aγ is 0.498. The linear approximation

a
(1)
γ (left) and the sum of linear and first non-linear a

(1)
γ + a

(2)
γ (right).

where the series expansion is valid for |α| < 1. And then we have

a(1)
γ = α1,

a(2)
γ = α2 + α2

1,

....

Similarly, since β = 1− ρ0

ρ , then

aρ =
ρ

ρ0
− 1 =

β

1− β
= β + β2 + β3 + · · · ,

where the series expansion is valid for |β| < 1. And then we have

a(1)
ρ = β1,

a(2)
ρ = β2 + β2

1 ,

....
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Figure 7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s, α1 =

3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aµ is 1.89. The linear approximation a
(1)
µ

(left) and the sum of linear and first non-linear a
(1)
µ + a

(2)
µ (right).

Then, after some substitutions, Eq. (58) becomes

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z)

=− 1
2 cos4 θ

α2
1(z)

− 1
2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2 cos4 θ

α′1(z)

z∫

0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫

0

dz′[α1(z′)− β1(z′)],

which is Eq. (57) exactly. Therefore Eq. (57) and Eq. (58) agree with each other.

The A(z) term in the Eq. (51) of last year’s annual report already been removed because we found
a −A(z) from one term which is considered mistakenly as zero when we reduce the elastic case to
acoustic case.
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Figure 8: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3; α0 =
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Figure 11: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s, α1 =

3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of aρ is 0.022. The linear approximation a
(1)
ρ

(left) and the sum of linear and first non-linear a
(1)
ρ + a

(2)
ρ (right).
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Figure 12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s, α1 =

3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of aγ is 0.19. The linear approximation a
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γ
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γ (right).
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Figure 13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s, α1 =
3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of aµ is 0.001. The linear approximation

a
(1)
µ (left) and the sum of linear and first non-linear a

(1)
µ + a

(2)
µ (right).
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Figure 14: The comparison between the synthesized values and the actual values of Rsp (top), Rps (middle) and
Rss (bottom) for Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 =
2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.
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Figure 15: The comparison between the synthesized values and the actual values of Rsp (top), Rps (middle) and
Rss (bottom) for Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s, α1 =
3251m/s; β0 = 1245m/s, β1 = 2138m/s.
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Figure 16: The comparison between the synthesized values and the actual values of Rsp (top), Rps (middle) and
Rss (bottom) for Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3; α0 =
2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.
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Figure 17: The comparison between the synthesized values and the actual values of Rsp (top), Rps (middle) and Rss
(bottom) for Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s, α1 =
3507m/s; β0 = 2138m/s, β1 = 2116m/s.
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